Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled growth of hard-sphere colloidal crystals

Abstract

Three-dimensional ordered colloidal systems with lattice constants comparable to the wavelength of visible light might find important application as photonic crystals1, optic filters and switches2, and chemical sensors3. Colloidal crystallization has been actively studied4,5,6,7,8, leading to the development of several methods to control the self-assembly of the colloidal particles; examples include colloidal epitaxy9 and space-based reduced-gravity techniques10,11. Here we report a method to control the nucleation and growth of hard-sphere colloidal crystals that relies on the use of temperature gradients to define a density gradient. This is somewhat counterintuitive as temperature does not play a role in determining the hard-sphere phase diagram. We obtain hard-sphere single crystals (size 3 mm) from a sample in a concentration regime that would remain in the liquid state in the absence of a temperature gradient. We expect the method to have applications in controlling the ordering and growth of various ‘soft’ systems including colloids, copolymers, emulsions and proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osmotic pressure as a function of volume fraction.
Figure 2: Density profiles.
Figure 3: Single colloidal hard-sphere crystals grown by temperature-gradient technique.
Figure 4: Dendritic crystals.

Similar content being viewed by others

References

  1. Joannopoulos,J. D., Villeneuve,P. R. & Fan,S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Pan,G., Kesavamoorthy,R. & Asher,S. A. Optically nonlinear Bragg diffracting nanosecond optical switches. Phys. Rev. Lett. 78, 3860–3863 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Holtz,J. H. & Asher,S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Pusey,P. N. & van Megen,W. Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Pusey,P. N. in Liquids, Freezing and the Glass Transition Ch. 10 (eds Hansen, J. P., Levesque, D. & Zinn-Justin, J.) 763–942 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  6. Poon,W. C. K. & Pusey,P. N. in Observation, Prediction and Simulation of Phase Transitions in Complex Fluids (eds Baus, M., Rull, L. F. & Ryckaert, J. P.) 3–51 (Kluwer Academic, Boston, 1995).

    Book  Google Scholar 

  7. Dinsmore,A. D., Crocker,J. C. & Yodh,A. G. Self-assembly of colloidal crystals. Curr. Opin. Colloid Interface Sci. 3, 5–11 (1998).

    Article  CAS  Google Scholar 

  8. Grier,D. G. (ed.) From dynamics to device: directed self-assembly of colloidal materials. MRS Bull. 23 (10), 21–50 (1998).

    Article  Google Scholar 

  9. van Blaaderen,A., Ruel,R. & Wiltzius,P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Zhu,J. et al. Crystallization of hard-sphere colloids in microgravity. Nature 387, 883–885 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Cheng,Z. Colloidal Hard Sphere Crystallization and Glass Transition. Thesis, Princeton Univ. (1998).

    Google Scholar 

  12. Hoover,E. G. & Ree,F. H. Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Woodcock,L. V. Glass transition in the hard sphere model and Kauzmann's paradox. Ann. NY Acad. Sci. 371, 274–298 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Phan,S.-E. et al. Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Phys. Rev. E 54, 6633–6645 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Underwood,S. M., Taylor,J. R. & van Megen,W. Sterically stabilized colloidal particles as model hard spheres. Langmuir 10, 3550–3354 (1994).

    Article  CAS  Google Scholar 

  16. Woodcock,L. V. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature 385, 141–143 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Bolhuis,P. G. et al. Entropy difference between crystal phases. Nature 388, 235–236 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Pronk,S. & Frenkel,D. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys. 110, 4589–4592 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Mau,S-C. & Huse,D. A. Stacking entropy of hard-sphere crystals. Phys. Rev. E 59, 4396–4401 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Pusey,P. N. et al. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Russel,W. B. et al. Dendritic growth of hard sphere crystals. Langmuir 13, 3871–3881 (1997).

    Article  CAS  Google Scholar 

  22. He,Y., Olivier,B. & Ackerson,B. J. Morphology of crystals made of hard spheres. Langmuir 13, 1408–1412 (1997).

    Article  CAS  Google Scholar 

  23. Hurd,A. J. et al. Lattice dynamics of colloidal crystals. Phys. Rev. A 26, 2869–2881 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Derksen,J. & Van de Water,W. Hydrodynamics of colloidal crystals. Phys. Rev. A 45, 5660–5673 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Pradhan,R. D. et al. Photonic band structure of bcc colloidal crystals. Phys. Rev. B 55, 9503–9507 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Tarhan,I. I. & Watson,G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Carnahan,N. F. & Starling,K. E. Equation of state for nonattracting rigid sphere. J. Chem. Phys. 51, 635–636 (1969).

    Article  ADS  CAS  Google Scholar 

  28. Hall,K. R. Another hard-sphere equation of state. J. Chem. Phys. 57, 2252–2254 (1972).

    Article  ADS  CAS  Google Scholar 

  29. Guinier,A. X-ray Diffraction (Freeman, San Francisco, 1963).

    Google Scholar 

  30. Sanders,J. V. Diffraction of light by opals. Acta Crystallogr. A 24, 427–434 (1968).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Huse and P. Ségre for discussions. This work was supported by the NASA Microgravity Sciences program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Chaikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Russel, W. & Chaikin, P. Controlled growth of hard-sphere colloidal crystals. Nature 401, 893–895 (1999). https://doi.org/10.1038/44785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44785

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing