Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News and Views Feature
  • Published:

Networking opportunity

A neglected mathematical theory is enjoying new popularity, thanks to its relevance to network dynamics in biological systems. The beating of a leech's heart is just one example that has a mathematical basis in ‘groupoid theory’.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The heart of the leech Hirudo medicinalis: a, the physiology and b, the observed patterns of neural activity.

A. & H.-F. MICHLER/SPL

Figure 2
Figure 3: Describing a network.
Figure 4: A square lattice, with nearest-neighbour coupling between nodes.

References

  1. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Nature Genet. 31, 60–63 (2002).

    Article  CAS  Google Scholar 

  2. Solé, R. V. & Pastor-Sattaras, R. in Handbook of Graphs and Networks (eds Bornholdt, S. & Schuster, H. G.) 145–167 (Wiley-VCH, Berlin, 2003).

    Google Scholar 

  3. Grassberger, P. Math. Biosci. 63, 157–172 (1983).

    Article  Google Scholar 

  4. Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Science 96, 1120–1123 (2002).

    Article  ADS  Google Scholar 

  5. Golubitsky, M., Stewart, I., Collins, J. J. & Buono, P.-L. Nature 401, 693–695 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J. & Wiener, M. C. Phil. Trans. R. Soc. Lond. B 356, 299–330 (2001).

    Article  CAS  Google Scholar 

  7. Stewart, I. & Cohen, J. in Nonlinear Phenomena in Biological and Physical Sciences (eds Malik, S. K., Chandrasekharan, M. K. & Pradhan, N.) 1–63 (Indian Natl Sci. Acad., New Delhi, 2000).

    Google Scholar 

  8. Stewart, I., Elmhirst, T. & Cohen, J., in Bifurcations, Symmetry, and Patterns (eds Buescu, J., Castro, S. & Dias, A. P. S.) 3–54 (Birkhäuser, Basel, 2003).

    Book  Google Scholar 

  9. Stewart, I. Phil. Trans. R. Soc. Lond. A 361, 1101–1123 (2003).

    Article  ADS  Google Scholar 

  10. Mirollo, R. E. & Strogatz, S. H. SIAM J. Appl. Math. 50, 1645–1662 (1990).

    Article  MathSciNet  Google Scholar 

  11. Pecora, L. M. & Carroll, T. L. Phys. Rev. Lett. 64, 821–824 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Boccaletti, S., Pecora, L. M. & Pelaez, A. Phys. Rev E 63, 066219 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Wang, X. F. Int. J. Bifurc. Chaos 12, 885–916 (2002).

    Article  Google Scholar 

  14. Stewart, I., Golubitsky, M. & Pivato, M. SIAM J. Appl. Dyn. Syst. (in the press).

  15. Weinstein, A. Not. Am. Math. Soc. 43, 744–752 (1996).

    Google Scholar 

  16. Calabrese, R. L. & Peterson, E. Symp. Soc. Exp. Biol. 37, 195–221 (1983).

    CAS  PubMed  Google Scholar 

  17. Gramoll, S., Schmidt, J. & Calabrese, R. L. J. Exp. Biol. 186, 157–171 (1994).

    CAS  PubMed  Google Scholar 

  18. Golubitsky, M., Josic, K. & Kaper, T. J. in Global Analysis of Dynamical Systems (eds Broer, H., Krauskopf, B. & Vegter, C.) 277–308 (Inst. Phys., Bristol, 2001).

    MATH  Google Scholar 

  19. Milo, R. et al. Science 298, 824–827 (2002).

    Article  ADS  CAS  Google Scholar 

  20. Shen-Orr, S., Milo, R., Shmoolik, M. & Alon, U. Nature Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  21. Tutte, W. T. Graph Theory (Addison-Wesley, Menlo Park, 1984).

    MATH  Google Scholar 

  22. Kauffman, S. A. J. Theor. Biol. 22, 437–467 (1969).

    Article  CAS  Google Scholar 

  23. Wolfram, S. (ed.) Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

  24. Golubitsky, M. & Stewart, I. The Symmetry Perspective (Birkhäuser, Basel, 2002).

    Book  Google Scholar 

  25. Grimmett, G. R. & Stirzaker, D. R. Probability and Random Processes (Clarendon, Oxford, 1992).

    MATH  Google Scholar 

  26. Barnsley, M. F. Fractals Everywhere (Academic, Boston, 1993).

    MATH  Google Scholar 

  27. Mainzer, K. Thinking in Complexity (Springer, Berlin, 1994).

    Book  Google Scholar 

  28. Watts, D. J. & Strogatz, S. H. Nature 393, 440–442 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Newman, M. E. J. SIAM Rev. 45, 167–256 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).

    Book  Google Scholar 

  31. Burn, R. P. Groups: A Path to Geometry (Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  32. Brandt, H. Math. Ann. 96, 360–366 (1927).

    Article  MathSciNet  Google Scholar 

  33. Golubitsky, M., Nicol, M. & Stewart, I. Some Curious Phenomena in Coupled Cell Networks (in the press).

  34. Singer, W. Neuron 24, 49–65 (1999).

    Article  CAS  Google Scholar 

  35. Ashwin, P., Buescu, J. & Stewart, I. Nonlinearity 9, 703–737 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, I. Networking opportunity. Nature 427, 601–604 (2004). https://doi.org/10.1038/427601a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/427601a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing