Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Turbulent drag reduction by passive mechanisms

Abstract

In many situations involving flows of high Reynolds number (where inertial forces dominate over viscous forces), such as aircraft flight and the pipeline transportation of fuels, turbulent drag is an important factor limiting performance. This has led to an extensive search for both active and passive methods for drag reduction1. Here we report the results of a series of wind-tunnel experiments that demonstrate a passive means of effectively controlling turbulence in channel flow. Our approach involves the introduction of specified patterns of protrusions on the confining walls, which interact with the coherent, energy-bearing eddy structures in the wall region, and so influence the rate at which energy is dissipated in the turbulent flow. We show that relatively small changes in the arrangement of these protrusions can alter the response of the system from one of drag decrease to increased mixing (drag enhancement).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Plan view of the floor of the channel used in these experiments.
Figure 2: Plot of friction coefficient Cf (=2u*2/U02) against Reynolds number Re (=U02h/ν).

Similar content being viewed by others

References

  1. Coustols, E. & Savill, A. M. in AGARD FDP/VKI Special course on Skin Friction and Drag Reduction. 2–6 March, VKI Brussels, Belgium (1992).

    Google Scholar 

  2. Rajaee, M., Karlsson, S. K. F. & Sirovich, L. On the streak spacing and vortex roll size in a turbulent channel flow. Phys. Fluids 258, 2439–2443 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  3. Patel, V. C. & Head, M. R. Some observations on skin friction and velocity profiles in developed pipe and channel flows. J. Fluid Mech. 38, 181–193 (1969).

    Article  ADS  Google Scholar 

  4. von Karman, T. Mechanische ahnlichkeit und turbulenz. Nachr. Akad. Wiss. Göttingen 58, (1930).

  5. Millikan, C. B. A. in 5th Int. Congr. of Applied Mechanics 386 (Wiley, New York, (1938)).

    Google Scholar 

  6. Zagarola, M. V. & Smits, A. J. Scaling of the mean velocity profiel for turbulent pipe flow. Phys. Rev. Lett. 78, 239–242 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Zagarola, M. V., Perry, A. E. & Smits, A. J. Log laws or power laws: The scaling in the overlap region. Phys. Fluids 9, 2094–2100 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. The structure of turbulent boundary layers. J. Fluid Mech. 95, 741–773 (1967).

    Article  ADS  Google Scholar 

  9. Kim, H. T., Kline, S. J. & Reynolds, W. C. The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133–160 (1971).

    Article  ADS  Google Scholar 

  10. Smith, C. R. & Metzler, S. P. The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54 (1983).

    Article  ADS  Google Scholar 

  11. Bernard, P. S., Thomas, J. M. & Handler, R. A. Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385–419 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Jang, P. S., Benney, D. J. & Gran, R. L. On the origin of streamwise vortices in a turbulent boundary layer. J. Fluid Mech. 169, 109–123 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Butler, K. M. & Farrell, B. F. Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5, 774–777 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Waleffe, F. On a self-sustaining process in shear flows. Phys. Fluids 4, 883–900 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. Sirovich, L. Origin and spacing of streaks in wall bounded turbulence. Phys. Fluids(submitted).

  16. Onsager, L. Statistical hydrodynamics. Nuovo Cimento VI, 279–287 (1949).

    Article  MathSciNet  Google Scholar 

  17. Kraichnan, R. H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  18. Offen, G. R. & Kline, S. J. Combined dye streak and hydrogen bubble visual observations of a turbulent boundary layer. J. Fluid Mech. 62, 223–239 (1974).

    Article  ADS  Google Scholar 

  19. Corino, E. R. & Brodkey, R. S. Avisual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30 (1969).

    Article  ADS  Google Scholar 

  20. Coles, D. E. in Coherent Structure of Turbulent Boundary Layers(eds Smith, C. R. & Abbot, D. E.) (AFOSR/Lehigh Univ. Workshop, Dept of Mech. Eng. Mech. Bethlehem, PA, (1978)).

    Google Scholar 

  21. Walsh, M. J. in Progress in Astronautics and Aeronautics Vol. 123 (eds Bushnell, D. & Hefner, J.) (AIAA, Reston, VA, (1990)).

    Google Scholar 

  22. Coustols, E. & Cousteix, J. in Proc. 2nd IUTAM Symp. on Structure of Turbulence and Drag Reduction.

  23. Goldstein, D., Handler, R. & Sirovich, L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface. J. Fluid Mech. 302, 333–375 (1995).

    Article  ADS  Google Scholar 

  24. Chu, D. c. & Karniadakis, G. E. The direct numerical simulation of laminar and turbulent flow over riblets. J. Fluid Mech. 250, 1–42 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Sirovich, L., Ball, K. S. & Keefe, L. R. Plane waves and structures in turbulent channel flow. Phys. Fluids 2, 2217–2226 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Sirovich, L., Ball, K. S. & Handler, R. A. Propagating structures in wall-bounded turbulent flows. Theor. Comput. Fluid Dyn. 2, 307–317 (1991).

    Article  Google Scholar 

  27. Morrison, W. R. B., Bullock, K. J. & Kronauer, R. E. Experimental evidence of waves in the sublayer. J. Fluid Mech. 47, 639–656 (1971).

    Article  ADS  Google Scholar 

  28. Jimenez, J. & Moin, P. The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991).

    Article  ADS  Google Scholar 

  29. Webber, G. A., Handler, R. A. & Sirovich, L. The Karhunen-Loeve decomposition of minimal channel flow. Phys. Fluids 9, 1054–1066 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Sirovich, L. in Self-Sustaining Mechanisms of Wall Turbulence(ed. Panton, R. L.) (Computational Mechanics Publications, Southampton, in the press).

  31. Handler, R. A., Levich, E. & Sirovich, L. Drag reduction in turbulent channel flow by phase randomization. Phys. Fluids 5, 686 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Tiederman, W., Luchik, T. & Bogard, D. Wall-layer structure and drag reduction. J. Fluid Mech. 156, 419–437 (1985).

    Article  ADS  CAS  Google Scholar 

  33. Eckelman, L., Fortuna, G. & Hanratty, T. J. Drag reduction and wavelengths of flow-oriented wall eddies. Nature 236, 94–96 (1972).

    Article  ADS  Google Scholar 

  34. Laufer, J. The structure of turbulence in fully developed pipe flow. Report 1174 (Nat. Adv. Com. Aeronaut., Washington DC, (1954).

  35. Clark, J. A. Astudy of incompressible turbulent boundary layers in channel flow. Trans. ASME Ser. D 90, 445–455 (1968).

    Google Scholar 

  36. Comte-Bellot, G. Ecoulement Turbulent Entre Deux Parois Paralleles(Publications Scientifiques et Techniques Vol. 419, Minstere de L'air, Paris, (1965)).

    Google Scholar 

  37. Hussain, A. K. M. F. & Reynolds, W. C. Measurements in fully developed turbulent channel flow. J. Fluid Eng. 97, 568–580 (1975).

    Article  Google Scholar 

  38. Alfredsson, P. H. & Johansson, A. V. Time scales in turbulent channel flow. Phys. Fluids 27, 1974–1981 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Levich for help in the initiation of the experiment; B.Knight for many discussions; M. Rajee for his contribution until he left in January 1996; R. Handler and D.Goldstein for calculations; U. Fisher (Ormat Industries) for preparation of the patterned materials; and Y. Bronicki for support and encouragement. This work was done in the framework of a project initiated and supported by Orlev Scientific/Ormat Industries Ltd, Yavne, Israel. Experimental facilities were provided under an agreement with Brown University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sirovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirovich, L., Karlsson, S. Turbulent drag reduction by passive mechanisms. Nature 388, 753–755 (1997). https://doi.org/10.1038/41966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41966

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing