Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine

A Corrigendum to this article was published on 02 May 2002

Abstract

Molecular chaperones and proteases monitor the folded state of other proteins. In addition to recognizing non-native conformations, these quality control factors distinguish substrates that can be refolded from those that need to be degraded1. To investigate the molecular basis of this process, we have solved the crystal structure of DegP (also known as HtrA), a widely conserved heat shock protein that combines refolding and proteolytic activities2. The DegP hexamer is formed by staggered association of trimeric rings. The proteolytic sites are located in a central cavity that is only accessible laterally. The mobile side-walls are constructed by twelve PDZ domains, which mediate the opening and closing of the particle and probably the initial binding of substrate. The inner cavity is lined by several hydrophobic patches that may act as docking sites for unfolded polypeptides. In the chaperone conformation, the protease domain of DegP exists in an inactive state, in which substrate binding in addition to catalysis is abolished.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of DegP.
Figure 2: Peptide-binding sites of PDZ1 and PDZ2.
Figure 3: The protease domain.
Figure 4: The central cavity.

Similar content being viewed by others

References

  1. Wickner, S., Maurizi, M. R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  Google Scholar 

  2. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  Google Scholar 

  3. Gottesman, S., Wickner, S. & Maurizi, M. R. Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997).

    Article  CAS  Google Scholar 

  4. Lipinska, B., Zylicz, M. & Georgopoulos, C. The Htra (Degp) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172, 1791–1797 (1990).

    Article  CAS  Google Scholar 

  5. Pallen, M. J. & Wren, B. W. The HtrA family of serine proteases. Mol. Microbiol. 26, 209–221 (1997).

    Article  CAS  Google Scholar 

  6. Zumbrunn, J. & Trueb, B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett. 398, 187–192 (1996).

    Article  CAS  Google Scholar 

  7. Gray, C. W. et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur. J. Biochem. 267, 5699–5710 (2000).

    Article  CAS  Google Scholar 

  8. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  Google Scholar 

  9. Wootton, J. C. & Drummond, M. H. The Q-Linker—a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2, 535–543 (1989).

    Article  CAS  Google Scholar 

  10. Cabral, J. H. M. et al. Crystal structure of a PDZ domain. Nature 382, 649–652 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Liao, D. I., Qian, J., Chisholm, D. A., Jordan, D. B. & Diner, B. A. Crystal structures of the photosystem II D1 C-terminal processing protease. Nature Struct. Biol. 7, 749–753 (2000).

    Article  CAS  Google Scholar 

  12. Lowe, J. et al. Crystal structure of the 20s proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl Acad. Sci. USA 94, 6070–6074 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Wang, J. M., Hartling, J. A. & Flanagan, J. M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  Google Scholar 

  15. Larsen, C. N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell 91, 431–434 (1997).

    Article  CAS  Google Scholar 

  16. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  Google Scholar 

  17. Brandstetter, H., Kim, J. S., Groll, M. & Huber, R. Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466–470 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).

    Article  CAS  Google Scholar 

  19. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  Google Scholar 

  20. Misra, R., Castillokeller, M. & Deng, M. Overexpression of protease-deficient DegP(S210A) rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J. Bacteriol. 182, 4882–4888 (2000).

    Article  CAS  Google Scholar 

  21. Swamy, K. H. S., Chung, C. H. & Goldberg, A. L. Isolation and characterization of protease Do from Escherichia coli, a large serine protease containing multiple subunits. Arch. Biochem. Biophys. 224, 543–554 (1983).

    Article  CAS  Google Scholar 

  22. Strauch, K. L., Johnson, K. & Beckwith, J. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J. Bacteriol. 171, 2689–2696 (1989).

    Article  CAS  Google Scholar 

  23. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  24. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Kraulis, P. J. Molscript—a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Merritt, E. A. & Bacon, D. J. in Macromolecular Crystallography Part B 505–524 (Methods in Enzymology, Vol. 277, Academic, New York, 1997).

    Book  Google Scholar 

  28. Evans, S. V. Setor—hardware-lighted 3-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Bharadwaj, R. & Honig, B. Grasp—graphical representation and analysis of surface properties. Biophys. J. 64, A166–A166 (1993).

    Google Scholar 

  30. Perona, J. J. & Craik, C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Spiess for providing cells for SeMet expression, and G. P. Bourenkov and J. McCarthy for assistance during data collection at beamlines BW6 (DESY, Hamburg) and ID14-4 (ESRF, Grenoble), respectively. We thank R. A. John and W. Bode for critical reading of the manuscript. Financial support by EU ERB (M.G.-F.), DFG (R.H.) and Aventis (T.C.) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Clausen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krojer, T., Garrido-Franco, M., Huber, R. et al. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002). https://doi.org/10.1038/416455a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416455a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing