Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage

Abstract

Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage1. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the genome overall2. In mammalian cells, defective TCR gives rise to the severe human disorder Cockayne's syndrome (CS)3. The best-studied CS gene, CSB, codes for a Swi/Snf-like DNA-dependent ATPase, whose yeast homologue is called Rad26 (ref. 4). Here we identify a yeast protein, termed Def1, which forms a complex with Rad26 in chromatin. The phenotypes of cells lacking DEF1 are consistent with a role for this factor in the DNA damage response, but Def1 is not required for TCR. Rather, def1 cells are compromised for transcript elongation, and are unable to degrade RNA polymerase II (RNAPII) in response to DNA damage. Our data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26–Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAPII when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Affinity-purification of Rad26 and Def1.
Figure 2: UV-sensitivity of def1 strains.
Figure 3: The effect of DEF1 deletion on TCR and transcript elongation.
Figure 4: DEF1 is required for UV-induced ubiquitination and degradation of Rpb1.

Similar content being viewed by others

References

  1. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington, DC, 1995).

    Google Scholar 

  2. Hanawalt, P. C. Controlling the efficiency of excision repair. Mutat. Res. 485, 3–13 (2001).

    Article  CAS  Google Scholar 

  3. de Boer, J. & Hoeijmakers, J. H. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    Article  CAS  Google Scholar 

  4. van Gool, A J. et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–5369 (1994).

    Article  CAS  Google Scholar 

  5. Otero, G. et al. Elongator, a multi-subunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    Article  CAS  Google Scholar 

  6. Winkler, G. S. et al. RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J. Biol. Chem. 276, 32743–32749 (2001).

    Article  CAS  Google Scholar 

  7. Verhage, R. A. et al. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol. Cell Biol. 16, 496–502 (1996).

    Article  CAS  Google Scholar 

  8. Wind, M. & Reines, D. Transcription elongation factor SII. Bioessays 22, 327–336 (2000).

    Article  CAS  Google Scholar 

  9. Archambault, J., Lacroute, F., Ruet, A. & Friesen, J. D. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell Biol. 12, 4142–4152 (1992).

    Article  CAS  Google Scholar 

  10. Wu, J., Awrey, D. E., Edwards, A. M., Archambault, J. & Friesen, J. D. In vitro characterization of mutant yeast RNA polymerase II with reduced binding for elongation factor TFIIS. Proc. Natl Acad. Sci. USA 93, 11552–11557 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    Article  CAS  Google Scholar 

  12. Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 6972–6979 (1999).

    Article  CAS  Google Scholar 

  13. Lommel, L., Bucheli, M. E. & Sweder, K. S. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc. Natl Acad. Sci. USA 97, 9088–9092 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Conaway, J. W., Shilatifard, A., Dvir, A. & Conaway, R. C. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 25, 375–380 (2000).

    Article  CAS  Google Scholar 

  15. Jelinsky, S. A., Estep, P., Church, G. M. & Samson, L. D. Regulatory networks revealed by transcription profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell Biol. 20, 8157–8167 (2000).

    Article  CAS  Google Scholar 

  16. Hilt, W. & Wolf, D. H. Proteasomes: destruction as a programme. Trends Biochem. Sci. 21, 96–102 (1996).

    Article  CAS  Google Scholar 

  17. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    Article  CAS  Google Scholar 

  18. Gillette, T. G. et al. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev. 15, 1528–1539 (2001).

    Article  CAS  Google Scholar 

  19. Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T. & Johnston, S. A. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell 7, 981–991 (2001).

    Article  CAS  Google Scholar 

  20. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    Article  ADS  CAS  Google Scholar 

  21. McKay, B. C. et al. UV light-induced degradation of RNA polymerase II is dependent on the Cockayne's syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485, 93–105 (2001).

    Article  CAS  Google Scholar 

  22. Luo, Z., Zheng, J., Lu, Y. & Bregman, D. B. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486, 259–274 (2001).

    Article  CAS  Google Scholar 

  23. Schmickel, R. D., Chu, E. H., Trosko, J. E. & Chang, C. C. Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics 60, 135–139 (1977).

    CAS  PubMed  Google Scholar 

  24. Venema, J., Mullenders, L. H., Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA 87, 4707–4711 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  26. van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955–5965 (1997).

    Article  CAS  Google Scholar 

  27. Yu, A., Fan, H. Y., Liao, D., Bailey, A. D. & Weiner, A. M. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5, 801–810 (2000).

    Article  CAS  Google Scholar 

  28. Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).

    Article  CAS  Google Scholar 

  29. Jansen, L. E. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19, 6498–6507 (2000).

    Article  CAS  Google Scholar 

  30. Thompson, N. E. & Burgess, R. R. Immunoaffinity purification of RNA polymerase II and transcription factors using polyol-responsive monoclonal antibodies. Methods Enzymol. 274, 513–526 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cancer Research UK service facilities, especially fermentation services, for their help. We thank A. Grewal for assistance with peptide mass fingerprinting, and B. Winkler, P. Verrijzer, S. West and T. Lindahl for comments on the manuscript. This work was supported by grants from the ICRF and the Human Frontier Science Programme to J.Q.S., and by a NCI Core Grant to P.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Q. Svejstrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woudstra, E., Gilbert, C., Fellows, J. et al. A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002). https://doi.org/10.1038/415929a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415929a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing