Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coupling of kinesin steps to ATP hydrolysis

Abstract

A key goal in the study of the function of ATP-driven motor enzymes is to quantify the movement produced from consumption of one ATP molecule1,2,3. Discrete displacements of the processive motor kinesin along a microtubule have been reported as 5 and/or 8 nm (refs 4, 5). However, analysis of nanometre-scale movements is hindered by superimposed brownian motion. Moreover, because kinesin is processive and turns over stochastically, some observed displacements must arise from summation of smaller movements that are too closely spaced in time to be resolved. To address both of these problems, we used light microscopy instrumentation6 with low positional drift (<39 pm sāˆ’1) to observe single molecules of a kinesin derivative moving slowly (āˆ¼2.5 nm sāˆ’1) at very low (150 nM) ATP concentration, so that ATP-induced displacements were widely spaced in time. This allowed increased time-averaging to suppress brownian noise (without application of external force4,5), permitting objective measurement of the distribution of all observed displacement sizes. The distribution was analysed with a statistics-based method which explicitly takes into account the occurrence of unresolved movements, and determines both the underlying step size and the coupling of steps to ATP hydrolytic events. Our data support a fundamental enzymatic cycle for kinesin in which hydrolysis of a single ATP molecule is coupled to a step distance of the microtubule protofilament lattice spacing of 8.12 nm (ref.7). Step distances other than 8 nm are excluded, as is the coupling of each step to two or more consecutive ATP hydrolysis reactions with similar rates, or the coupling of two 8-nm steps to a single hydrolysis. The measured ratio of ATP consumption rate to stepping rate is invariant over a wide range of ATP concentration, suggesting that the 1 ATP to 8 nm coupling inferred from behaviour at low ATP can be generalized to high ATP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Velocities parallel to microtubule axis of beads of 100-nm diameter conjugated to single molecules of kinesin derivative K448-BIO.
Figure 2: Movement of a bead-labelled single K448-BIO molecule along a microtubule in 150 nM ATP.
Figure 3: Cumulative histograms of displacements of bead-labelled enzyme compared to histograms calculated for various enzyme mechanisms.

Similar content being viewed by others

References

  1. Taylor, E. W. Variations on the theme of movement. Nature 361, 115ā€“116 (1993).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  2. Ishijima, A. et al. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057ā€“1063 (1994).

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865ā€“6869 (1994).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721ā€“727 (1993).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  5. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913ā€“1917 (1996).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  6. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450ā€“453 (1988).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  7. Beese, L., Stubbs, G. & Cohen, C. Microtubule structure at 18 ƅ resolution. J. Mol. Biol. 194, 257ā€“264 (1987).

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Stewart, R. J., Thaler, J. P. & Goldstein, L. S. B. Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. Proc. Natl Acad. Sci. USA 90, 5209ā€“5213 (1993).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  9. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B. & Gelles, J. Subunit interactions in dimeric kinesin heavy chain derivatives that lack the kinesin rod. J. Biol. Chem. 270, 3926ā€“3931 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. Identification of globular mechanochemical heads of kinesin. Nature 338, 355ā€“357 (1989).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  11. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718ā€“721 (1995).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  12. Berliner, E. thesis, Brandeis Univ. Waltham, MA((1995)).

  13. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154ā€“158 (1989).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  14. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348ā€“352 (1990).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  15. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451ā€“453 (1996).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  16. Segel, I. H. Enzyme Kinetics(Wiley, New York, (1975)).

    Google ScholarĀ 

  17. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671ā€“676 (1995).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  18. Ma, Y. -Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242ā€“13251 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Arnal, I., Metoz, F., DeBonis, S. & Wade, R. Three-dimensional structure of functional motor proteins on microtubules. Curr. Biol. 6, 1265ā€“1270 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539ā€“9544 (1996).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  21. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277ā€“279 (1995).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  22. Kikkawa, M., Ishikawa, T., Wakabayashi, T. & Hirokawa, N. Three-dimensional structure of the kinesin headā€“microtubule complex. Nature 376, 274ā€“276 (1995).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  23. Ray, S., Meyhoefer, E., Milligan, R. A. & Howard, J. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083ā€“1093 (1993).

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Gelles, J. et al. Structural and functional features of one- and two-headed biotinated kinesin derivatives. Biophys. J. 68, 276sā€“282s (1995).

    Google ScholarĀ 

  25. Berliner, E. et al. Microtubule movement by a biotinated kinesin bound to a streptavidin-coated surface. J. Biol. Chem. 269, 8610ā€“8615 (1994).

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Hackney, D. D., Malik, A. -S. & Wright, K. W. Nucleotide-free kinesin hydrolyzes ATP with burst kinetics. J. Biol. Chem. 264, 15943ā€“15948 (1989).

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Hackney, D. D. Kinesin ATPase: rate-limiting ADP release. Proc. Natl Acad. Sci. USA 85, 6314ā€“6318 (1988).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  28. Gallagher, N. C. J & Wise, G. L. Atheoretical analysis of the properties of median filters. IEEE Trans. Acoust. Speech Signal Process. 29, 1136ā€“1141 (1981).

    ArticleĀ  Google ScholarĀ 

  29. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627ā€“1639 (1964).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank X. Liu for preliminary studies, H. Mahtani for technical assistance, and C.Miller and H. Huxley for comments on the manuscript. This work was supported by the NIH and by an HHMI predoctoral fellowship to E.C.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Fleming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, W., Young, E., Fleming, M. et al. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390ā€“393 (1997). https://doi.org/10.1038/41118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing