Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal correlates of visibility and invisibility in the primate visual system

Abstract

A brief visual target stimulus may be rendered invisible if it is immediately preceded or followed by another stimulus. This class of illusions, known as visual masking, may allow insights into the neural mechanisms that underlie visual perception. We have therefore explored the temporal characteristics of masking illusions in humans, and compared them with corresponding neuronal responses in the primary visual cortex of awake and anesthetized monkeys. Stimulus parameters that in humans produce forward masking (in which the mask precedes the target) suppress the transient on-response to the target in monkey visual cortex. Those that produce backward masking (in which the mask comes after the target) inhibit the transient after-discharge, the excitatory response that occurs just after the disappearance of the target. These results suggest that, for targets that can be masked (those of short duration), the transient neuronal responses associated with onset and turning off of the target may be important in its visibility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Psychophysical measurements of the timing parameters important for visual masking.
Figure 3: Individual (a–c) and averaged (d–f) responses of 30 neurons in area V-1 of alert rhesus monkey, plotted with 5-ms bin width. Each cell was tested with at least 50 stimulus presentations for each condition.
Figure 4: Multi-unit recording from upper layers of area V-1 in an anesthetized rhesus monkey.
Figure 5: A multi-unit recording from layer 4B of an anesthetized squirrel monkey, showing responses to a longer-duration target (target duration, 334 msec; mask duration, 84 msec).

Similar content being viewed by others

References

  1. Exner, S. in Wiener Sitzungbericht der mathematisch—naturwissenschaftlichen Classe der kaiser-lichen Akademie der Wissenschaften 601–632 (1868)

  2. Helmholtz, H. Helmholtz's Treatise on Physiological Optics 1–480 (Gryphon Editions, Ltd., Birmingham, Alabama, 1985)

    Google Scholar 

  3. Stigler, R. in IX Congress International de Physiologie 78 (Arch. Int. Physiologie, Groningen, 1913)

  4. Alpern, M. Metacontrast: Historical introduction. Am. J. Optometry 29, 631–646 (1952)

    Article  CAS  Google Scholar 

  5. Breitmeyer, B. Visual Masking: An integrative approach 1–454 (Clarendon Press, Oxford, 1984)

    Google Scholar 

  6. Schiller, P.H. in Information processing in the nervous system (ed. Leibovic, K.N. 141– 165 (Springer-Verlag, New York, 1969)

    Google Scholar 

  7. Wurtz, R.H., Richmond, B.J. & Judge, S.J. Vision during saccadic eye movements. III. Visual interactions in monkey superior colliculus. J.Neurophysiol. 43, 1168– 1181 (1980)

    Article  CAS  Google Scholar 

  8. Richmond, B.J. & Wurtz, R.H. Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. J.Neurophysiol. 43, 1156–1167 ( 1980)

    Article  CAS  Google Scholar 

  9. Judge, S.J., Wurtz, R.H. & Richmond, B.J. Vision during saccadic eye movements. I. Visual interactions in striate cortex. J.Neurophysiol. 43, 1133 –1155 (1980)

    Article  CAS  Google Scholar 

  10. Schiller, P.H. Single unit analysis of backward visual masking and metacontrast in the cat lateral geniculate nucleus. Vision Res. 8, 855– 866 (1968)

    Article  CAS  Google Scholar 

  11. Stigler, R. in Handbuch der Biologischen Arbeitsmethoden (ed. Aberhslden, E.) 949– 968 (Urban and Schwarzenberg, Berlin, 1926)

    Google Scholar 

  12. Weisstein, N. & Haber, R.N. A U-shaped backward masking function . Psychonomic Sci. 2, 75– 76 (1965)

    Article  Google Scholar 

  13. Smith, M.C. & Schiller, P.H. Forward and backward masking: a comparison. Can.J.Psychol. 20, 191– 197 (1966)

    Article  CAS  Google Scholar 

  14. Breitmeyer, B.G. & Ganz, L. Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol Rev 83, 1–36 (1976)

    Article  CAS  Google Scholar 

  15. Matin, E. The two-transient (masking) paradigm. Psychol. Rev. 82, 451 –461 (1975)

    Article  CAS  Google Scholar 

  16. Bridgeman, B. Metacontrast and lateral inhibition. Psychol. Rev. 78, 528–539 (1971)

    Article  CAS  Google Scholar 

  17. Francis, G. in Online Proceedings of the 1996 Midwest Artificial Intelligence and Cognitive Science Conference (ed. Gasser, M.) (1995)

    Google Scholar 

  18. Alpern, M. Metacontrast . J. Opt. Soc. Am. 43, 648– 657 (1953)

    Article  CAS  Google Scholar 

  19. Breitmeyer, B.G. Metacontrast masking as a function of mask energy. Bull. Psychonomic Soc. 12, 50–52 (1978)

    Article  Google Scholar 

  20. Sperling, G. Temporal and spatial visual masking. I. Masking by impulse flashes. J.Opt. Soc. Am. 55, 541–559 ( 1965)

    Article  Google Scholar 

  21. Livingstone, M.S., Freeman, D.C. & Hubel, D.H. Visual responses in V1 of freely viewing monkeys Cold Spring Harb. Symp. Quant. Biol. LXI, 27– 37 (1996)

    Google Scholar 

  22. Livingstone, M.S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998)

    Article  CAS  Google Scholar 

  23. Bridgeman, B. Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination. Brain Res. 196 , 347–364 (1980)

    Article  CAS  Google Scholar 

  24. Kolers, P. & Rosner, B.S. On visual masking (metacontrast): Dichoptic observations. Am. J. Psychol. 73, 2–21 (1960)

    Article  CAS  Google Scholar 

  25. McFadden, D. & Gummerman, K. Monoptic and dichoptic metacontrast across the vertical meridian. Vision Res. 13, 185–196 (1973)

    Article  CAS  Google Scholar 

  26. Weisstein, N. W-shaped and U-shaped functions obtained for monoptic and dichoptic disk-disk masking. Percept. Psychophys. 9, 275–278 (1971)

    Article  Google Scholar 

  27. Olson, C.X. & Boynton, R.M. Dichoptic metacontrast masking reveals a central basis for monoptic chromatic induction. Percept. Psychophys. 35, 295–300 (1984)

    Article  CAS  Google Scholar 

  28. Bridgeman, B. Correlates of metacontrast in single cells of the cat visual system. Vision Res. 15, 91–99 ( 1975)

    Article  CAS  Google Scholar 

  29. Werner, H. Studies on contour: I. Qualitative analysis. Am. J. Psychol. 47, 40–64 (1935)

    Article  Google Scholar 

  30. Maunsell, J.H. & Gibson, J.R. Visual response latencies in striate cortex of the macaque monkey. J.Neurophysiol. 68, 1332–1344 (1992)

    Article  CAS  Google Scholar 

  31. Tovee, M.J., Rolls, E.T., Treves, A. & Bellis, R.P. Information encoding and the responses of single neurons in the primate temporal visual cortex . J.Neurophysiol. 70, 640– 654 (1993)

    Article  CAS  Google Scholar 

  32. deCharms, R.C. & Merzenich, M.M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 ( 1996)

    Article  CAS  Google Scholar 

  33. Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997)

    Article  CAS  Google Scholar 

  34. Yarbus, A.L. Eye Movements and Vision (Plenum Press, New York, 1967)

    Book  Google Scholar 

  35. Day, E.C. Photoelectric currents in the eye of the fish. Am. J. Physiol. 38 , 369–398 (1915)

    Article  Google Scholar 

  36. Riggs, L.A. & Ratliff, F. The effects of counteracting the normal movements of the eye. J. Opt. Soc. Am. 42, 872–873 (1952)

    Google Scholar 

  37. Coppola, D. & Purves, D. The extraordinarily rapid sisappearance of entoptic images. Proc. Natl Acad. Sci. USA 93, 8001–8004 (1996)

    Article  CAS  Google Scholar 

  38. Hubel, D.H. & Livingstone, M.S. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7, 3378–415 (1987)

    Article  CAS  Google Scholar 

  39. Hubel, D.H. & Wiesel, T.N. Receptive fields of single neurons in the cat's striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David C. Freeman, Gail Robertson, Frederic Russo, and Michael LaFratta for technical and administrative assistance. We also thank David Hubel, Earl Miller, Susana Martinez-Conde, Martin Usrey, John Reppas, Elio Raviola, Richard Born, Rodney D. Boyum, Bruce Bean, Raul Krauss, and Robert Desimone for their comments on this manuscript. This project was funded by grants from the NIH and Charles A. Dana Foundation to MSL, and training grants from the NIH, the Harvard Mahoney Neuroscience Institute, and the Sackler Foundation to SLM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Macknik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macknik, S., Livingstone, M. Neuronal correlates of visibility and invisibility in the primate visual system. Nat Neurosci 1, 144–149 (1998). https://doi.org/10.1038/393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing