Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of odorant adaptation in the olfactory receptor cell

Abstract

Adaptation to odorants begins at the level of sensory receptor cells1–5, presumably through modulation of their transduction machinery. The olfactory signal transduction involves the activation of the adenylyl cyclase/cyclic AMP second messenger system which leads to the sequential opening of cAMP-gated channels and Ca2+ -activated chloride ion channels4–7. Several reports of results obtained from in vitro preparations describe the possible molecular mechanisms involved in odorant adaptation; namely, ordorant receptor phosphorylation8,9, activation of phosphodiesterase10, and ion channel regulation11–14. However, it is still unknown whether these putative mechanisms work in the intact olfactory receptor cell. Here we investigate the nature of the adaptational mechanism in intact olfactory cells by using a combination of odorant stimulation and caged cAMP photolysis15 which produces current responses that bypass the early stages of signal transduction (involving the receptor, G protein and adenylyl cyclase). Odorant- and cAMP-induced responses showed the same adaptation in a Ca2+ -dependent manner, indicating that adaptation occurs entirely downstream of the cyclase. Moreover, we show that phosphodiesterase activity remains constant during adaptation and that an affinity change of the cAMP-gated channel for ligands accounts well for our results. We conclude that the principal mechanism underlying odorant adaptation is actually a modulation of the cAMP-gated channel by Ca2+ feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Getchell, T. V. & Shepherd, G. M. J. Physiol. (Lond.) 282, 541–560 (1978).

    Article  CAS  Google Scholar 

  2. Kurahashi, T. & Shibuya, T. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  3. Firestein, S., Shepherd, G. M. & Werblin, F. S. J. Physiol. (Lond.) 430, 135–158 (1990).

    Article  CAS  Google Scholar 

  4. Reed, R. R. Neuron 8, 205–209 (1992).

    Article  CAS  Google Scholar 

  5. Breer, H. et al. in Sensory Transduction (eds Corey, D. P. & Roper, S. D.) 93–108 (Rockefeller Univ. Press, New York, 1992).

    Google Scholar 

  6. Kurahashi, T. & Yau, K.-W. Curr. Biol. 4, 256–258 (1994).

    Article  CAS  Google Scholar 

  7. Torre, V., Ashmore, J. F., Lamb, T. D. & Menini, A. J. Neurosci. 15, 7757–7768 (1995).

    Article  CAS  Google Scholar 

  8. Boekhoff, I. & Breer, H. Proc. Natl Acad. Sci. USA 89, 471–474 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Boekhoff, I., Schleicher, S., Strotmann, J. & Breer, H. Proc. Natl Acad. Sci. USA 89, 11983–11987 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Borisy, F. F. et al. J. Neurosci. 12, 915–923 (1992).

    Article  CAS  Google Scholar 

  11. Kramer, R. H. & Siegelbaum, S. A. Neuron 9, 897–906 (1992).

    Article  CAS  Google Scholar 

  12. Lynch, J. W. & Lindemann, B. J. Gen. Physiol. 103, 87–106 (1994).

    Article  CAS  Google Scholar 

  13. Chen, T.-Y. & Yau, K. W. Nature 368, 545–548 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Balasubramanian, S., Lynch, J. W. & Barry, P. H. J. Membr. Biol. 152, 13–23 (1996).

    Article  CAS  Google Scholar 

  15. Nerbonne, J. M., Richard, S., Nargeot, J. & Lester, H. Nature 310, 74–76 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Zufall, F., Shepherd, G. M. & Firestein, S. Proc. R. Soc. Lond. B 246, 225–230 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Firestein, S., Picco, C. & Menini, A. J. Physiol. (Lond.) 468, 1–10 (1993).

    Article  CAS  Google Scholar 

  18. Lowe, G. & Gold, G. H. Nature 366, 283–286 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kurahashi, T. J. Physiol. (Lond.) 430, 355–371 (1990).

    Article  CAS  Google Scholar 

  20. Lamb, T. D. & Pugh, E. N. Trends Neurosci. 15, 291–298 (1992).

    Article  CAS  Google Scholar 

  21. Hsu, Y.-T. & Molday, R. S. Nature 361, 76–79 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Koutalos, Y. & Yau, K.-W. Trends Neurosci. 19, 73–81 (1996).

    Article  CAS  Google Scholar 

  23. Kawamura, S. & Murakami, M. Nature 349, 420–423 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Kawamura, S. Nature 362, 855–857 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. & Miki, N. Neuron 2, 469–476 (1990).

    Article  Google Scholar 

  26. Kawamura, S. et al. J. Biol. Chem. 271, 21359–21364 (1996).

    Article  CAS  Google Scholar 

  27. Buck, L. & Axel, R. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  28. Kurahashi, T. J. Physiol. (Lond.) 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  29. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Kurahashi, T. & Kaneko, A. NeuroReport 2, 5–8 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurahashi, T., Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997). https://doi.org/10.1038/385725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385725a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing