Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of floral meristem identity genes in Arabidopsis

Abstract

THE Arabidopsis floral meristem-identity genes APETALA1 (API) and LEAFY (LFY) confer floral identity on developing floral primordia1–4, whereas TERMINAL FLOWER (TFL) is required to repress their expression within shoot and inflorescence meristems1,5. LFY and AP1 are expressed in floral primordia in response to environmental conditions, such as day length, which regulate the onset of flowering, and presumably also in response to the action of genes that influence flowering time. However, the relationship between these flowering-time genes and the floral meristem-identity genes has been difficult to assess because flowering time is determined by several interacting genetic path-ways6,7. Here we describe a method to regulate expression of the flowering-time gene CONSTANS (CO) and demonstrate that CO expression is sufficient to trigger flowering, irrespective of day length. In response to CO expression, transcription of LFY and TFL is initiated rapidly, whereas transcription of AP1 occurs much later. We propose that CO acts within a genetic pathway that is sufficient to activate LFY and TFL transcription, but that rapid activation of AP1 requires an additional pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. Cell 69, 843–859 (1992).

    Article  CAS  Google Scholar 

  2. Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Nature 360, 273–277 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Weigel, D. & Nilsson, O. Nature 377, 495–500 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Mandel, M. A. & Yanofsky, M. F. Nature 377, 522–524 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Cell 76, 131–143 (1994).

    Article  CAS  Google Scholar 

  6. Martinez-Zapater, J. M., Coupland, G., Dean, C. & Koornneef, M. in Arabidopsis (eds Meyerowitz, E. & Somerville, C.) 403–404 (Cold Spring Harbor Press, New York, 1994).

    Google Scholar 

  7. Coupland, G. Trends Genet. 11, 393–397 (1995).

    Article  CAS  Google Scholar 

  8. Redei, G. P. Genetics 47, 443–460 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Koornneef, M., Hanhart, C. J. & van der Veen, J. H. Mol. Gen. Genet. 229, 57–66 (1991).

    Article  CAS  Google Scholar 

  10. Putterill, J., Robson, F., Lee, K., Simon, R. & Coupland, G. Cell 80, 847–857 (1995).

    Article  CAS  Google Scholar 

  11. Lloyd, A. M., Schena, M., Walbot, V. & Davis, R. Science 266, 436–439 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Aoyama, T. et al. Plant Cell 7, 1773–1785 (1995).

    Article  CAS  Google Scholar 

  13. Shannon, S. & Meeks-Wagner, D. R. Plant Cell 3, 877–892 (1991).

    Article  CAS  Google Scholar 

  14. Hempel, F. D. & Feldman, L. J. Planta 192, 276–286 (1994).

    Article  Google Scholar 

  15. McDaniel, C. N., Singer, S. R. & Smith, S. M. E. Dev. Biol. 153, 59–69 (1992).

    Article  CAS  Google Scholar 

  16. Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. Cell 72, 85–95 (1993).

    Article  CAS  Google Scholar 

  17. Bradley, D. et al. Nature 379, 791–797 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, R., Igeño, M. & Coupland, G. Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59–62 (1996). https://doi.org/10.1038/384059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing