Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization

Abstract

THE equatorial Pacific Ocean is a 'high-nitrate, low-chlorophyll' region where nitrate and phosphate are abundant all year round. These nutrients cannot therefore be limiting to phytoplankton production. It has been suggested that the bioavailability of iron—a micronutrient—may be preventing full biological utilization of the major nutrients1–3. The results of a previous in situ iron fertilization experiment in this region provided support for this hypothesis4, but the observed biological response resulted in only a small decrease in surface-water CO2 fugacity5. Here we report a much larger, biologically induced uptake of surface-water CO2 that occurred during a second study6. The fugacity of CO2 in the centre of the (iron-fertilized) patch of surface ocean fell from a background value near 510 μatm to approximately 420 μatm, corresponding to a transient 60% decrease in the natural ocean-to-atmosphere CO2 flux. We conclude that iron supply to this ocean region can strongly modulate the local short-term source of CO2 to the atmosphere, but has little long-term influence on atmospheric CO2 partial pressure. However, if such a modulation also occurs in the Southern Ocean, then iron bioavailability at high southern latitudes could have a significant effect on atmospheric CO2 partial pressure7–11, for example over glacial–interglacial periods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hart, T. J. Discovery Rep. 8, 1–268 (1934).

    Google Scholar 

  2. Moore, R. M., Milley, J. E. & Chatt, A. Oceanologica Acta 7, 221–228 (1984).

    CAS  Google Scholar 

  3. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1989).

    Article  ADS  Google Scholar 

  4. Martin, J. H. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Watson, A. J. et al. Nature 371, 143–145 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Coale, K. et al. Nature 383 495–501 (1986).

    Article  ADS  Google Scholar 

  7. Sarmiento, J. L. & Orr, J. C. Limnol. Oceanogr. 36, 1928–1950 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Peng, T.-H. & Broecker, W. S. Nature 349, 227–229 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Nature 349, 772–775 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kurz, K. D. & Maier-Reimer, E. Glob. Biogeochem. Cycles 7, 229–244 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Siegenthaler, U. & Sarmiento, J. L. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  12. DeBaar, H. J. W. et al. Mar. Ecol. Prog. Ser. 65, 34–44 (1990).

    Google Scholar 

  13. Hudson, J. M. & Morel, F. M. M. Limnol. Oceanogr. 35, 1002–1020 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Coale, K. H. Limnol. Oceanogr. 36, 1851–1864 (1992).

    Article  ADS  Google Scholar 

  15. Cooper, D. J., Watson, A. J. & Ling, R. D. Mar. Chem. (submitted).

  16. Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Glob. Biogeochem. Cycles 7, 843–887 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Wanninkhof, R., Ledwell, J. R. & Watson, A. J. J. Geophys. Res. 96, 8733–8740 (1991).

    Article  ADS  Google Scholar 

  18. Upstill-Goddard, R. C., Watson, A. J., Wood, J. & Liddicoat, M. I. Analytica Chim. Acta 249, 555–562 (1991).

    Article  CAS  Google Scholar 

  19. Law, C. S., Watson, A. J. & Liddicoat, M. I. Mar. Chem. 48, 57–69 (1994).

    Article  CAS  Google Scholar 

  20. Behrenfeld, M. et al. Nature 383, 508–511 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Watson, A. J., Liss, P. S. & Duce, R. A. Limn. Oceanogr. 36, 1960–1965 (1992).

    Article  Google Scholar 

  22. Rue, E. L. & Bruland, K. W. Eos (Ocean Sci. Mtg) 77, 154 (1996).

    Google Scholar 

  23. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Wong, C. S., Chan, Y.-H., Page, J. S., Smith, G. E. & Bellegay, R. D. Tellus 45B, 64–79 (1983).

    ADS  Google Scholar 

  25. Feely, R. A. et al. Deep-Sea Res. II 42, 365–386 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Houghton, J. T. et al. (eds) Climate Change 1994: Radiative Forcing of Climate Change (Cambridge Univ. Press, 1995).

  27. Martin, J. H. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  28. Kumar, N. et al. Nature 378, 675–680 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Mitchell, G., Brody, E. A., Holm-Hansen, O., McClain, C. & Bishop, J. Limnol. Oceanogr. 36, 1662–1677 (1991).

    Article  ADS  Google Scholar 

  30. Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Glob. Biogeochem. Cycles 4, 5–12 (1990).

    Article  ADS  CAS  Google Scholar 

  31. DeBaar, H. J. W. et al. Nature 373, 412–415 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, D., Watson, A. & Nightingale, P. Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization. Nature 383, 511–513 (1996). https://doi.org/10.1038/383511a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383511a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing