Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

Abstract

Ecology has long been troubled by the controversy over how populations are regulated1,2. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central3,4,5,6. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare7,8. Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates9,10. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture–recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actual data (a, b), statistical model estimates (c) and mathematical model predictions (d, e).
Figure 2: ac, Simulation runs with parameter estimates from models DD/DID, DD and DID.
Figure 3: Bifurcation diagrams showing the dynamics of the mathematical model at different slopes of the linearly decreasing segment of the density-dependent function.

Similar content being viewed by others

References

  1. Andrewartha, H. G. & Birch, L. C. The Distribution and Abundance of Animals (Univ. Chicago Press, 1954).

    Google Scholar 

  2. Nicholson, A. The balance of animal populations. J. Anim. Ecol. 2, 132–178 (1933).

    Article  Google Scholar 

  3. Hörnfeldt, B. Delayed density dependence as a determinant of vole cycles. Ecology 75, 791–806 (1994).

    Article  Google Scholar 

  4. Saitoh, T., Stenseth, N. C. & Bjørnstad, O. N. Density-dependence in fluctuating grey-sided vole populations. J. Anim. Ecol. 66, 14–24 (1997).

    Article  Google Scholar 

  5. Grenfell, B. T., Price, O. F., Albon, S. D. & Clutton-Brock, T. H. Overcompensation and population cycles in an ungulate. Nature 355, 823–826 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Putman, R. J., Langbein, J., Hewison, A. J. M. & Sharma, S. K. Relative roles of density-dependent and density-independent factors in population dynamics of British deer. Mamm. Rev. 26, 81–101 (1996).

    Article  Google Scholar 

  7. Ostfeld, R. S., Canham, C. D. & Pugh, S. R. Intrinsic density-dependent regulation of vole populations. Nature 366, 259–261 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Ostfeld, R. S. & Canham, C. D. Density-dependent processes in meadow voles: an experimental approach. Ecology 76, 521–532 (1995).

    Article  Google Scholar 

  9. Lebreton, J.-D. & Clobert, J. in Bird Population Studies, Relevance to Conservation and Management (eds Perrins, C. M., Lebreton, J.-D. & Hirons, G. J. M.) 105–125 (Oxford Univ. Press, 1991).

    Google Scholar 

  10. Wolda, H. & Dennis, B. Density dependence tests; are they? Oecologia 95, 581–591 (1993).

    Article  ADS  Google Scholar 

  11. Leirs, H., Verhagen, R. & Verheyen, W. Productivity of different generations in a population of Mastomys natalensis rats in Tanzania. Oikos 68, 53–60 (1993).

    Article  Google Scholar 

  12. Leirs, H., Verhagen, R., Verheyen, W., Mwanjabe, P. & Mbise, T. Forecasting rodent outbreaks in Africa: an ecological basis for Mastomys control in Tanzania. J. Appl. Ecol. 33, 937–943 (1996).

    Article  Google Scholar 

  13. Leirs, H., Verhagen, R. & Verheyen, W. The basis of reproductive seasonality in Mastomys rats (Rodentia: Muridae) in Tanzania. J. Trop. Ecol. 10, 55–66 (1994).

    Article  Google Scholar 

  14. Hubert, B., Couturier, G., Poulet, A. & Adam, F. Les conséquences d'un supplement alimentaire sur la dynamique des populations de rongeurs au Sénégal. I. Le cas de Mastomys erythroleucus en zone Sahélo-Soudanienne. Rev. Ecol. 35, 73–95 (1982).

    Google Scholar 

  15. Granjon, L., Ganem, G., Ba, K. & Duplantier, J.-M. Water physiology and population dynamics in insular populations of Mastomys huberti (Rodentia, Muridae). Pol. Ecol. Stud. 30, 343–355 (1994).

    Google Scholar 

  16. Ebenman, B. & Pearsson, B. Size Structured Populations: Ecology and Evolution (Springer, Berlin, 1988).

    Book  Google Scholar 

  17. Orzack, S. H. in Structured-Population Models in Marine, Terrestrial and Freshwater Systems (eds Tuljapurkar, S. & Caswell, H.) 273–302 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  18. Cohen, J. E. Unexpected dominance of high frequencies in chaotic nonlinear population models. Nature 378, 610–612 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Sugihara, G. From out of the blue. Nature 378, 559–560 (1995).

    Article  ADS  CAS  Google Scholar 

  20. White, A., Begon, M. & Bowers, R. G. Explaining the colour of power spectra in chaotic ecological models. Proc. R. Soc. Lond. B 263, 1731–1737 (1996).

    Article  ADS  Google Scholar 

  21. Pollock, K. H. Acapture-recapture design robust to unequal propability of capture. J. Wild. Mgmt 46, 757–760 (1982).

    Article  Google Scholar 

  22. Brownie, C., Hines, J. E., Nichols, J. D., Pollock, K. H. & Hestbeck, J. B. Capture-recapture studies for multiple strata including non-Markovian transitions. Biometrics 49, 1173–1187 (1993).

    Article  Google Scholar 

  23. Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).

    Article  Google Scholar 

  24. Pollock, K. H. Capture-recapture models allowing for age-dependent survival and capture rates. Biometrics 37, 521–529 (1981).

    Article  Google Scholar 

  25. Hines, J. E. MSSURVIV User's Manual (Patuxent Environmental Science Center, Laurel, MD, 1994).

    Google Scholar 

  26. Krebs, C. J. Ecological Methodology (Harper Collins, New York, 1989).

    Google Scholar 

  27. Kendall, W. L. & Pollock, K. H. in Wildlife 2001: Populations (eds McCullough, D. R. & Barret, R. H.) 31–43 (Elsevier, London, 1992).

    Book  Google Scholar 

  28. Nichols, J. D., Pollock, K. H. & Hines, J. E. The use of a robust capture-recapture design in small mammal population studies. A field example with Microtus penssylvanicus. Acta Theriol. 29, 357–365 (1984).

    Article  Google Scholar 

  29. Ito, Y. On the methods for determining density-dependence by means of regression. Oecologia 10, 347–372 (1972).

    Article  ADS  Google Scholar 

  30. Kuno, E. Sampling error as a misleading artifact in “key factor analysis”. Res. Popul. Ecol. 13, 28–45 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Johanessen and D. Hjermann for help in the initial stages of the analyses; B. Grenfell, R. Boonstra, E. Bølviken and N. Yoccoz for discussions and comments; H. Yordanos (Addis Ababa) for providing working facilities for H.L. and N.C.S. during a retreat in Ethiopia; R.Machang'u, C. A. Sabuni and co-workers; and the Sokoine University of Agriculture. This work was supported by the European Union, the Belgian Agency for Development Co-operation, the National Fund for Scientific Research (Belgium) (H.L. is a postdoctoral research fellow); and the Norwegian Research Council (N.C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Chr. Stenseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leirs, H., Stenseth, N., Nichols, J. et al. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389, 176–180 (1997). https://doi.org/10.1038/38271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38271

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing