Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

External supply of oxygen to the atmospheres of the giant planets

Abstract

The atmospheres of the giant planets are reducing, being mainly composed of hydrogen, helium and methane. But the rings and icy satellites that surround these planets, together with the flux of interplanetary dust, could act as important sources of oxygen, which would be delivered to the atmospheres mainly in the form of water ice or silicate dust1,2,3,4,5,6,7. Here we report the detection, by infrared spectroscopy, of gaseous H2O in the upper atmospheres of Saturn, Uranus and Neptune. The implied H2O column densities are 1.5 × 1015, 9× 1013 and 3× 1014 molecules cm−2 respectively. CO2 in comparable amounts was also detected in the atmospheres of Saturn and Neptune. These observations can be accounted for by external fluxes of 105–107 H2O molecules cm−2 s−1 and subsequent chemical processing in the atmospheres. The presence of gaseous water and infalling dust will affect the photochemistry, energy budget and ionospheric properties of these atmospheres. Moreover, our findings may help to constrain the injection rate and possible activity of distant icy objects in the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Thermal profiles used for the analysis of the H2O and CO2 lines.
Figure 2: a, b, The 14.98-μm ν2 band of CO2 observed at Saturn and Neptune (stepped lines) compared with fits (dashed lines) obtained with the ‘transport’ model (see text and Table 1).

Similar content being viewed by others

References

  1. Prather, M., Logan, J. A. & McElroy, M. B. carbon monoxide in Jupiter's upper atmosphere: an extraplanetary source. Astrophys. J. 223, 1072–1081 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Strobel, D. F. & Yung, Y. L. The Galilean satellites as a source of CO in the jovian upper atmosphere Icarus 37, 256–263 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Connerney, J. E. P. & Waite, J. H. New model of Saturn's ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Majeed, T. & McConnell, J. C. The upper ionospheres of Jupiter and Saturn. Planet. Space Sci. 39, 1715–1732 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Rizk, B. & Hunten, D. M. Solar heating of the Uranian mesopause by dust of ring origin. Icarus 88, 429–447 (1990).

    Article  ADS  Google Scholar 

  6. Moses, J. I. Meteroid ablation in Neptune's atmosphere. Icarus 99, 368–383 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Morfill, G. E., Fechtig, H., Grün, E. & Goertz, C. K. Some consequences of meteoroid impacts on Saturn's rings. Icarus 55, 439–447 (1983).

    Article  ADS  CAS  Google Scholar 

  8. de Graauw, T. et al. Observing with the ISO Short-Wavelength Spectrometer. Astron. Astrophys. 315, L49–L52 (1996).

    ADS  Google Scholar 

  9. Kessler, M. et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 315, L27–L30 (1996).

    ADS  Google Scholar 

  10. de Graauw, T. et al. First results of ISO-SWS observations of Saturn: detection of CO2, CH3C2H, C4H2and tropospheric H2O. Astron. Astrophys. 321, L13–L16 (1997).

    ADS  CAS  Google Scholar 

  11. Winkelstein, P. et al. Adetermination of the composition of the saturnain stratosphere using the IUE. Icarus 54, 309–318 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Fouchet, T. et al. HST spectro-imaging of Saturn and search for water from the rings. Bull. Am. Astron. Soc. 28, 1129 (1996).

    ADS  Google Scholar 

  13. Grün, E. et al. Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994).

    ADS  Google Scholar 

  14. Grün, E., Zook, H. A., Fechtig, H. & Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

    Article  ADS  Google Scholar 

  15. Humes, D. H. Results of Pioneer 1- and 11 meteroid experiments: interplanetary and near Saturn. J. Geophys. Res. 85, 5841–5852 (1980).

    Article  ADS  Google Scholar 

  16. Samuelson, R. E. et al. CO2on Titan. J. Geophys. Res. 88, 8709–8715 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Lara, L. M., Lellouch, E., Lopez-Moreno, J. J. & Rodrigo, R. J. Vertical distribution of Titan's atmospheric neutral constituents. J. Geophys. Res. 101, 23261–23283 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Colwell, J. E. & Esposito, L. W. Origins of the rings of Uranus and Neptune. 1. Statistics of satellite disruptions. J. Geophys. Res. 97, 10227–10241 (1992).

    Article  ADS  Google Scholar 

  19. Lellouch, E. in The Collision of Comet Shoemaker-Levy 9 and Jupiter (eds Noll, K. S., Weaver, H. A. & Feldman, P. D.) 213–242 (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

  20. Cuzzi, J. N. & Durisen, R. H. Bombardment of planetary rings of meteoroids: general formulation and effects of Oort cloud projectiles. Icarus 84, 467–501 (1990).

    Article  ADS  Google Scholar 

  21. Broadfoot, L. A. et al. Ultraviolet spectrometer observations of Uranus. Science 233, 74–79 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Colwell, J. E. & Esposito, L. W. Anumerical model of the Uranian dust rings. Icarus 86, 530–560 (1990).

    Article  ADS  Google Scholar 

  23. Colwell, J. E. & Esposito, L. W. Amodel of dust production in the Neptune ring system. Geophys. Res. Lett. 17, 1741–1744 (1990).

    Article  ADS  Google Scholar 

  24. Foryta, D. W. & Sicardy, B. The dynamics of the Neptunian Adams ring's arcs. Icarus 123, 129–167 (1996).

    Article  ADS  Google Scholar 

  25. Northrop, T. G. & Hill, J. R. The inner edge of Saturn's B ring. J. Geophys. Res. 88, 6102–6108 (1993).

    Article  ADS  Google Scholar 

  26. Shemansky, D. E. et al. Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329–331 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Crovisier, J. in Asteroids, Comets and Meteors (eds Milani, A. et al.) 313 (IAU Symp., Kluwer, Dordrecht, 1993).

    Google Scholar 

  28. Marten, A. et al. First observations of CH and HCN on Neptune and Urans at millimeter wavelengths and their implications for atmospheric chemistry. Astrophys. J. 406, 285–297 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Rosenqvist, J. et al. Millimeter-wave observations of Saturn, Uranus and Neptune: CO and HCN on Neptune. Astrophys. J. 392, L99–L102 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Noll, K. S. & Larson, H. A. The spectrum of Saturn from 1990 to 2230 cm−1: abundances of AsH3, CH3D, CO. GeH4, NH3and PH3. Icarus 89, 168–189 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Fernandez, J. A. Dynamical capture of physical decay of short-period comets. Icarus 64, 308–319 (1985).

    Article  ADS  Google Scholar 

  32. Quinn, T., Tremaine, S. & Duncan, M. Planetary perturbations and the origin of short-period comets. Astrophys. J. 355, 667–679 (1990).

    Article  ADS  Google Scholar 

  33. Smith, G. R. et al. Saturn upper's atmosphere from the Voyager 2 EUV solar and stellar occultation. J. Geophys. Res. 88, 8667–8678 (1983).

    Article  ADS  CAS  Google Scholar 

  34. Atreya, S. K. et al.in Saturn (ed. Gehrels, T.) 239–277 (Univ. Arizona Press, Tucson, 1984).

    Google Scholar 

  35. Bishop, J., Atreya, S. K., Herbert, F. & Romani, P. Reanalysis of Voyager 2 UVS occultation at Uranus: hydrocarbon mixing ratios in the equatorial stratosphere. Icarus 88, 448–464 (1990).

    Article  ADS  CAS  Google Scholar 

  36. Atneya, S. K., Sandel, B. R. & Romani, P. N. in Uranus (eds Bergstrahl, J. T., Miner, E. D. & Matthews, M. S.) 110–146 (Univ. Arizona Press, Tucson, 1990).

    Google Scholar 

  37. Romani, P. N., Bishop, J., Bézard, B. & Atreya, S. Methane photochemistry on Neptune: ethane and acetylene mixing ratios and haze production. Icarus 106, 442–463 (1993).

    Article  ADS  CAS  Google Scholar 

  38. Bishop, J. S. et al. Voyager 2 ultraviolet spectrometer solar occultations at Neptune: constraints on the abundance of methane in the stratosphere. J. Geophys. Res. 97, 11681–11684 (1992).

    Article  ADS  CAS  Google Scholar 

  39. Hubbard, W. B. et al. Structure of Saturn's mesosphere from the 28Sgr occultation. Icarus(submitted).

  40. Strobel, D. F. et al.in Uranus (eds Bergstrahl, J. T., Miner, E. D. & Matthews, M. S.) 65–109 (Univ. Arizona Press, Tucson, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank A. Enzian, A. C. Levasseur-Regourd and B. Sicardy for discussion. This work was based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. The SWS is a joint cooperation of the SRON and the MPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lellouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuchtgruber, H., Lellouch, E., de Graauw, T. et al. External supply of oxygen to the atmospheres of the giant planets. Nature 389, 159–162 (1997). https://doi.org/10.1038/38236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38236

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing