Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for heavy metals in forest decline indicated by phytochelatin measurements

Abstract

FOREST decline in the United States and Europe has been documented for a number of tree species1,2 and atmospheric pollutants from industrial sources, such as acids or oxidants, are thought to be partly responsible1–4. Heavy metals have also been implicated because their deposition pattern is correlated with forest decline5–11, but so far there has been no direct evidence for a physiological link between tree damage and exposure to metals. Here we use the concentrations of phytochelatins, which are intracellular metal-binding peptides that act as specific indicators of metal stress12,13, to show that metals are indeed likely to be a contributing factor in the decline of forests in the north-eastern United States. Phytochelatin concentrations in red spruce, a species in decline, are higher than in balsam fir, a species which is not. Concentrations increase with altitude, as does forest decline, and they also increase across the region in forest stands that show increasing levels of tree damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eager, C. & Adams, M. B. (eds) Ecology and Decline of Red Spruce in the Eastern United States (Springer, New York, 1992).

  2. Schulze, E.-D. Science 244, 776–783 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Taylor, G. E. Jr, Johnson, D. W. & Andersen, C. P. Ecol. Appl. 4, 662–689 (1994).

    Article  Google Scholar 

  4. McLaughlin, S. B. J. Air Pollut. Control Ass. 35, 512–534 (1985).

    Article  CAS  Google Scholar 

  5. Johnson, A. H. & Siccama, T. G. Envir. Sci. Technol. 17, 294A–305A (1983).

    Article  ADS  CAS  Google Scholar 

  6. Goldbold, D. L. & Hüttermann, A. Environ. Pollut. Ser. A 38, 375–381 (1985).

    Article  Google Scholar 

  7. Herrick, G. T. & Friedland, A. J. Water Air Soil Pollut. 53, 151–157 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Friedland, A. J., Johnson, A. H. & Siccama, T. G. Water Air Soil Pollut. 29, 233–243 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Friedland, A. J. & Johnson, A. H. J. envir. Qual. 14, 332–336 (1985).

    Article  CAS  Google Scholar 

  10. Smith, W. H. & Siccama, T. G. J. envir. Qual. 10, 323–333 (1981).

    Article  CAS  Google Scholar 

  11. Johnson, A. H., Siccama, T. G. & Friedland, A. J. J. envir. Qual. 11, 577–580 (1982).

    Article  CAS  Google Scholar 

  12. Schat, H. & Kalff, M. M. A. Plant Physiol. 99, 1475–1480 (1992).

    Article  CAS  Google Scholar 

  13. Grill, E., Winnacker, E.-L & Zenk, M. H. Experientia 44, 539–540 (1988).

    Article  CAS  Google Scholar 

  14. Gekeler, W., Grill, E., Winnacker, E.-L. & Zenk, M. H. Z. Naturf. 44c, 361–369 (1989).

    Article  Google Scholar 

  15. Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.-L. & Zenk, M. H. FEBS Lett. 258, 42–46 (1989).

    Article  CAS  Google Scholar 

  16. Battles, J. J., Johnson, A. H., Siccama, T. G., Friedland, A. J. & Miller, E. K. Bull. Torrey Bot. Cl. 119, 418–430 (1992).

    Article  Google Scholar 

  17. Craig, B. W. & Friedland, A. J. Environ. Monit. Assess. 18, 129–143 (1991).

    Article  CAS  Google Scholar 

  18. McLaughlin, S. B., Tjoelker, M. G. & Roy, W. K. Can. J. For. Res. 23, 380–386 (1993).

    Article  CAS  Google Scholar 

  19. Sheppard, L. J. New Phyt. 127, 69–82 (1994).

    Article  CAS  Google Scholar 

  20. McLaughlin, S. B. & Downing, D. J. Nature 374, 252–254 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Madamanchi, N. R., Hausladen, A., Alscher, R. G., Amundson, R. G. & Fellows, S. New Phyt. 118, 331–338 (1991).

    Article  CAS  Google Scholar 

  22. Vann, D. R., Strimbeck, G. R. & Johnson, A. H. For. Ecol. Mgt 51, 69–79 (1992).

    Article  Google Scholar 

  23. De Vos, C. H. R., Vonk, M. J., Vooijs, R. & Schat, H. Plant Physiol. 98, 853–858 (1992).

    Article  CAS  Google Scholar 

  24. Ahner, B. A., Price, N. M. & Morel, F. M. M. Proc. natn. Acad. Sci. U.S.A. 91, 8433–8436 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawel, J., Ahner, B., Friedland, A. et al. Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature 381, 64–65 (1996). https://doi.org/10.1038/381064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing