Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-binding properties of the yeast SWI/SNF complex

Abstract

THE SWI/SNF complex is required for the enhancement of transcription by many transcriptional activators in yeast1,2. Genetic and biochemical studies indicate that the complex facilitates activator function by antagonizing chromatin-mediated transcriptional repression3–6. The absence of known DNA-binding motifs in several SWI/SNF subunits and the failure to identify SWI/SNF-dependent DNA-binding activities in crude yeast extracts have led to the belief that the complex does not bind DNA7,8. Here we show that the SWI/SNF complex has a high affinity for DNA and that its DNA-binding properties are similar to those of proteins containing HMG-box domains9. The complex interacts with the minor groove of the DNA helix, binds synthetic four-way junction DNA, and introduces positive supercoils into relaxed plasmid DNA. These properties are likely to be important in the remodelling of chromatin structure by the SWI/SNF complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winston, F. & Carlson, M. Trends Genet. 8, 387–391 (1992).

    Article  CAS  Google Scholar 

  2. Peterson, C. L. & Tamkun, J. W. Trends biochem. Sci. 20, 143–146 (1995).

    Article  CAS  Google Scholar 

  3. Kruger, W. & Herskowitz, I. Molec. cell. Biol. 11, 4135–4146 (1991).

    Article  CAS  Google Scholar 

  4. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Genes Dev. 6, 228–2298 (1992).

    Article  Google Scholar 

  5. Kruger, W. et al. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  Google Scholar 

  6. Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Science 265, 53–60 (1990).

    Article  ADS  Google Scholar 

  7. Laurent, B. C., Treitel, M. A. & Carlson, M. Molec. cell. Biol. 10, 5616–5625 (1990).

    Article  CAS  Google Scholar 

  8. Peterson, C. L. & Herskowitz, I. Cell 68, 573–583 (1992).

    Article  CAS  Google Scholar 

  9. Grosschedl, R., Giese, K. & Pagel, J. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  10. Cairns, B. R., Kim, Y.-J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. Proc. natn. Acad. Sci. U.S.A. 91, 1950–1954 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Treich, I., Cairns, B. R., Santos, T., Brewster, E. & Carlson, M. Molec. cell. Biol. 15, 4240–4248 (1995).

    Article  CAS  Google Scholar 

  12. Van de Wetering, M. & Clevers, H. EMBO J. 11, 3039–3044 (1992).

    Article  CAS  Google Scholar 

  13. Copenhaver, G. P., Putnam, C. D., Denton, M. L. & Pikaard, C. S. Nucleic Acids Res. 22, 2651–2657 (1992).

    Article  Google Scholar 

  14. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

  15. Pil, P. M., Chow, C. S. & Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 90, 9465–9469 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Putnam, C. D. & Pikaard, C. S. Molec. cell. Biol. 12, 4970–4980 (1992).

    Article  CAS  Google Scholar 

  17. Bianchi, M. E., Beltrame, M. & Paonessa, G. Science 243, 1056–1059 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Bruhn, S. L., Pil, P. M., Essigmann, J. M., Housman, D. E. & Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 89, 2307–2311 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Lilley, D. M. J. Nature 357, 282–283 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Stros, M., Stokrova, J. & Thomas, J. O. Nucleic Acids Res. 22, 1044–1051 (1994).

    Article  CAS  Google Scholar 

  21. Fisher, R. P., Lisowsky, T., Parisi, M. A. & Clayton, D. A. J. biol. Chem. 267, 3358–3367 (1992).

    CAS  PubMed  Google Scholar 

  22. Diffley, J. F. X. & Stillman, B. J. biol. Chem. 267, 3368–3374 (1992).

    CAS  PubMed  Google Scholar 

  23. Lee, M.-S. & Garrard, W. T. Proc. natn. Acad. Sci. U.S.A. 88, 9675–9679 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Clark, D. J. & Felsenfeld, G. EMBO J. 10, 387–395 (1991).

    Article  CAS  Google Scholar 

  25. Peterson, C. L., Eaton, S. & Calame, K. Molec. cell. Biol. 8, 4972–4980 (1988).

    Article  CAS  Google Scholar 

  26. Bianchi, M. E. EMBO J. 7, 843–849 (1988).

    Article  CAS  Google Scholar 

  27. Knab, A. M., Fertala, J. & Bjornsti, M.-A. J. biol. Chem. 268, 22322–22330 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, J., Fyrberg, A., Ganster, R. et al. DNA-binding properties of the yeast SWI/SNF complex. Nature 379, 844–847 (1996). https://doi.org/10.1038/379844a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379844a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing