Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conserved residues and the mechanism of protein folding

Abstract

EXPERIMENTAL1–6 and simulation7 studies show that small mono-meric proteins fold in one kinetic step, which entails overcoming the free-energy barrier between the unfolded and the native protein through a transition state8,9. Two models of transition state formation have been proposed: a 'nonspecific' one in which it depends on the formation of a sufficient number of native-like contacts regardless of what amino acids are involved10–12, and a 'specific' one, in which it depends on formation of a specific subset of the native structure (a folding nucleus)8,13,14. The latter requires that some amino acids form most of their contacts in the transition state, whereas others only do so on reaching the native conformation. If so, mutations affecting the stability of the transition state nucleus should have a greater effect on the folding kinetics than mutations elsewhere, and the residues involved should be evolutionarily conserved. Lattice-model simulations and experiments8,13–16 suggest that such mutations exist. Here we present a method for determining the folding nucleus of a protein with known structure with two-state folding kinetics. This method is based on the alignment of many sequences designed to fold into the native conformation of a protein to identify the positions where amino acids are most conserved in designed sequences. The method is applied to chymotrypsin inhibitor 2 (CI2), a protein whose transition state has been previously studied by protein engineering14–16. The involvement of residues in folding nucleus of CI2 is clearly correlated with their conservation in design, and the residues forming the nucleus are highly conserved in 23 natural sequences homologous to CI2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jackson, S. E. & Fersht, A. R. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  2. Alexander, P., Orban, J. & Bryan, P. Biochemistry 31, 7243–7248 (1992).

    Article  CAS  Google Scholar 

  3. Schindler, T., Herrler, M., Marahiel, M. & Schmid, F. X. Nature struct. Biol. 2, 663–673 (1995).

    Article  CAS  Google Scholar 

  4. Sosnick, T. R., Mayne, L., Hiller, R. & Englander, S. W. Nature struct. Biology 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  5. Viguera, A. R., Martinez, J. C., Filiminov, V. V., Mateo, P. L. & Serrano, L. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  6. Kragelund, B. B., Robinson, C. V., Knudsen, J. & Dobson, C. M. Biochemistry 34, 7117–7124 (1995).

    Article  Google Scholar 

  7. Gutin, A. M., Abkevich, V. I. & Shakhnovich, E. I. Biochemistry 34, 3066–3076 (1995).

    Article  CAS  Google Scholar 

  8. Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Biochemistry 33, 10026–10036 (1994).

    Article  CAS  Google Scholar 

  9. Guo, Z. & Thirumalai, D. Biopolymers 35, 137–139 (1995).

    Article  Google Scholar 

  10. Shakhnovich, E. I., Farztdinov, G., Gutin, A. M. & Karplus, M. Phys. Rev. Lett. 67, 1665–1668 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Sali, A., Shakhnovich, E. I. & Karplus, M. Nature 369, 248–251 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Wolynes, P. G., Onuchic, J. N. & Thiramulai, D. Science 267, 1619–1620 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Fersht, A. Proc. natn. Acad. Sci. U.S.A 92, 10869–10873 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Itzhaki, L., Oltzen, D. & Fersht, A. J. molec. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  15. Jackson, S. E., elMasry, N. & Fersht, A. Biochemistry 32, 11270–11278 (1993).

    Article  CAS  Google Scholar 

  16. Oltsen, D. E., Itzhaki, L., elMasry, N., Jackson, S. E. & Fersht, A. Proc. natn. Acad. Sci. U.S.A. 91, 10422–10425 (1994).

    Article  ADS  Google Scholar 

  17. Shakhnovich, E. I. Phys. Rev. Lett. 72, 3907–3910 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Sander, C. & Schneider, R. Proteins 9 56–68 (1991).

    Article  CAS  Google Scholar 

  19. Myazawa, S. & Jernigan, R. Macromolecules 18, 534–552 (1985).

    Article  ADS  Google Scholar 

  20. Kolinski, A., Godzik, A. & Skolnick, J. J. chem. Phys. 98, 7420–7433 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Shakhnovich, E. I. & Gutin, A. M. Proc. natn. Acad. Sci. U.S.A. 90, 7195–7199 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Shakhnovich, E. I. & Gutin, A. M. Prot. Engng 6, 793–800 (1993).

    Article  CAS  Google Scholar 

  23. Bowie, J. U., Luthy, R. & Eisenberg, D. Science 253, 164–169 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. & Teller, E. J. chem. Phys 21, 1087–1092 (1953).

    Article  ADS  CAS  Google Scholar 

  25. Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. J. chem. Phys 101, 6052–6062 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Goldstein, R., Luthey-Schultzen, Z. A. & Wolynes, P. G. Proc. natn. Acad. Sci. U.S.A. 89, 4918–4922 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Sali, A., Shakhnovich, E. I. & Karplus, M. J. molec. Biol. 235, 1614–1636 (1994).

    Article  CAS  Google Scholar 

  28. Hao, M.-H. & Scheraga, H. J. ehem. Phys 102, 1334–1339 (1995).

    ADS  CAS  Google Scholar 

  29. Gutin, A. M., Abkevich, V. I. & Shakhnovich, E. I. Proc. natn. Acad. Sci. U.S.A. 92, 1282–1286 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Matouschek, A., Kellis, J., Serrano, L., Bycroft, M. & Fersht, A. Nature 346, 440–445 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Matouschek, A., Serrano, L. & Fersht, A. J. molec. Biol. 224, 819–835 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhnovich, E., Abkevich, V. & Ptitsyn, O. Conserved residues and the mechanism of protein folding. Nature 379, 96–98 (1996). https://doi.org/10.1038/379096a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379096a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing