Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes

Abstract

CONTROL of actin filament length and dynamics is important for cell motility and architecture and is regulated in part by capping proteins that block elongation and depolymerization at both the fast-growing (barbed) and slow-growing (pointed) ends1–4. Tropomodulin is a capping protein for the pointed end of the actin filament5,6; it is associated with the free, pointed ends of the thin filaments in striated muscle, where it is thought to bind to both tropomyosin and actin7,8. In embryonic chick cardiac myocytes, tropomodulin assembles after the thin, as well as the thick, filaments have become organized into periodic I and A bands8, suggesting that tropomodulin might be involved in maintaining actin filament length. Here we show that microinjection of an antibody that inhibits tropomodulin's pointed-end-capping activity in vitro results in a marked elongation of actin filaments from their pointed ends and a >80% reduction in the percentage of beating cells. This demonstrates that pointed-end capping by tropomodulin is required to maintain actin filament length in vivo and that this is essential for contractile function in embryonic chick cardiac myocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollard, T. D. & Cooper, J. A. A. Rev. Biochem. 55, 987–1035 (1986).

    Article  CAS  Google Scholar 

  2. Weeds, A. & Maciver, S. Curr. Opin. Cell Biol. 5, 63–69 (1993).

    Article  CAS  Google Scholar 

  3. Stossel, T. P. Science 260, 1086–1094 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Carlier, M. F. & Pantaloni, D. Semin. Cell Biol. 5, 183–191 (1994).

    Article  CAS  Google Scholar 

  5. Coluccio, L. M. J. Cell Biol. 127, 1497–1499 (1994).

    Article  CAS  Google Scholar 

  6. Weber, A., Pennise, C. R., Babcock, G. G. & Fowler, V. M. J. Cell Biol. 127, 1627–1635 (1994).

    Article  CAS  Google Scholar 

  7. Fowler, V. M., Sussman, M. A., Miller, P. G., Flucher, B. E. & Daniels, M. P. J. Cell Biol. 120, 411–420 (1993).

    Article  CAS  Google Scholar 

  8. Gregorio, C. C. & Fowler, V. M. J. Cell Biol. 129, 683–696 (1995).

    Article  CAS  Google Scholar 

  9. Babcock, G. & Fowler, V. M. J. biol. Chem. 269, 27510–27518 (1994).

    CAS  PubMed  Google Scholar 

  10. Fowler, V. M. J. Cell Biol. 111, 471–482 (1990).

    Article  CAS  Google Scholar 

  11. Wegner, A. J. molec. Biol. 131, 839–853 (1979).

    Article  CAS  Google Scholar 

  12. Ebashi, S. & Endo, M. Prog. Biophys. molec. Biol. 18, 123–183 (1968).

    Article  CAS  Google Scholar 

  13. Weber, A. & Murray, J. M. Physiol. Rev. 53, 612–673 (1973).

    Article  CAS  Google Scholar 

  14. Sung, L. A. et al. J. biol. Chem. 267, 2616–2621 (1992).

    CAS  PubMed  Google Scholar 

  15. Ito, M., Swanson, B., Sussman, M. A., Kedes, L. & Lyons, G. Devl Biol. 167, 317–328 (1995).

    Article  CAS  Google Scholar 

  16. Woo, M. K. & Fowler, V. M. J. Cell Sci. 107, 1359–1367 (1994).

    CAS  PubMed  Google Scholar 

  17. Sung, K.-L. P., Yang, L., Whittemore, D. & Sung, L. A. Molec. Biol. Cell 5, 54a (1994).

    Google Scholar 

  18. Sussman, M. A. et al. Devl Brain Res. 80, 45–53 (1994).

    Article  CAS  Google Scholar 

  19. Sussman, M. A., Sakhi, S., Barrientos, P., Ito, M. & Kedes, L. Circulation Res. 75, 221–232 (1994).

    Article  CAS  Google Scholar 

  20. Ursitti, J. A. & Fowler, V. M. J. Cell Sci. 107, 1633–1639 (1994).

    CAS  PubMed  Google Scholar 

  21. Shubeita, H. E., Thorburn, J. & Chien, K. Circulation 85, 2236–2246 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorio, C., Weber, A., Bondad, M. et al. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377, 83–86 (1995). https://doi.org/10.1038/377083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377083a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing