Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial climate instability in the Northeast Pacific Ocean

Abstract

RECENT climate records from Greenland ice cores1,2 and North Atlantic sediments3á¤-5 have challenged the long-held notion that Pleistocene climate fluctuates between two relatively stable states (glacials and interglacials). It has been appreciated for some time that the transitions from one state to another are not smooth6, but the new records indicate that the glacial and interglacial periods themselves appear to be punctuated by significant climate variability—several short interstadial events punctuated the last glacial period, for example. But it has not been clear whether this climate instability is a global phenomenon or is peculiar to the North Atlantic region. Here we present climate proxy records from sediment cores from the eastern margin of the North Pacific Ocean, which indicate that climate in this region was also highly unstable during the last glaciation. Our observations suggest that glacial climate instability throughout the Northern Hemisphere might be linked to rapid changes in the size of the Laurentide ice sheet and associated changes in atmospheric circulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  2. Taylor, K. C. et al. Nature 361, 432–436 (1993).

    Article  ADS  Google Scholar 

  3. Bond, G. et al. Nature 360, 245–249 (1992).

    Article  ADS  Google Scholar 

  4. Bond, G. et al. Nature 365, 143–147 (1993).

    Article  ADS  Google Scholar 

  5. Lehman, S. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  6. Ruddiman, W. F. & Duplessy, J. C. Quat. Res. 23, 1–17 (1985).

    Article  Google Scholar 

  7. Broecker, W. S. et al. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Broecker, W. S. et al. Paleoceanography 5, 469–477 (1990).

    Article  ADS  Google Scholar 

  9. MacAyeal, D. R. Paleoceanography 8, 775–784 (1993).

    Article  ADS  Google Scholar 

  10. Alley, R. B. & MacAyeal, D. R. Paleoceanography 9, 503–512 (1994).

    Article  ADS  Google Scholar 

  11. Be, A. W. H. in Oceanic Micropaleontology (ed. Ramsay. A.) 1–100 (Academic, London, 1977).

    Google Scholar 

  12. Reynolds, L. & Thunell, R. C. Micropaleontology 32, 1–18 (1986).

    Article  Google Scholar 

  13. Wolfteich, C. M. thesis, Mass. Inst. Technol./Woods Hole Ocean. Inst. (1994).

  14. Thunell, R. C. & Sautter, L. in Upwelling Systems (eds Summerhayes, C., Prell, W. & Emeis, K.) 77–92 (Geological Soc., London, 1992).

    Google Scholar 

  15. Kincaid, E., Thunell, R. & Le, J. (abstr.) Eos 76, 184 (1995).

    Google Scholar 

  16. Coulbourn, W., Parker, F. & Berger, W. Mar. Micropaleo. 5, 329–399 (1980).

    Article  ADS  Google Scholar 

  17. Bard, E. Paleoceanography 3, 635–645 (1988).

    Article  ADS  Google Scholar 

  18. Bard, E., Arnold, M., Fairbanks, R. & Hamelin, B. Radiocarbon 35, 191–199 (1993).

    Article  CAS  Google Scholar 

  19. Gorsline, D. & Prensky, S. in Quaternary Studies (ed. Suggate, R.) 147–154 (Royal Soc. of New Zealand, Wellington, 1975).

    Google Scholar 

  20. Kahn, M., Oba, T. & Ku, T. Geology 9, 485–490 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Mortyn, P. G. thesis, Univ. South Carolina (1994).

  22. CLIMAP Project Members Map Chart Ser. MC-36 (Geological Soc. of America, Boulder, 1981).

  23. COHMAP Members Science 241, 1043–1052 (1988).

  24. Jouzel, J. et al. Nature 364, 407–412 (1993).

    Article  ADS  Google Scholar 

  25. Bender, M. et al. Nature 372, 663–666 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Kennett, J. & Ingram, L. (abstr.) Eos 75, 347 (1994).

    Google Scholar 

  27. Clark, P. & Bartlein, P. Geol. Soc. Am. Abstr. Progm. 26, 255 (1994).

    Google Scholar 

  28. Broccoli, A. J. & Manabe, S. Clim. Dyn. 1, 87–100 (1987).

    Article  Google Scholar 

  29. Manabe, S. & Broccoli, A. J. J. geophys. Res. 90, 2167–2190 (1985).

    Article  ADS  Google Scholar 

  30. Kutzbach, J. E. & Geutter, P. J. J. atmos. Sci. 43, 1726–1759 (1986).

    Article  ADS  Google Scholar 

  31. Cook, K. H. Ann. Glaciol. 14, 32–38 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunell, R., Graham Mortyn, P. Glacial climate instability in the Northeast Pacific Ocean. Nature 376, 504–506 (1995). https://doi.org/10.1038/376504a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376504a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing