Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric transition intermediates modelled by crosslinked haemoglobins

Abstract

THE structural end-points of haemoglobin's transition from its low-oxygen-affinity (T) to high-oxygen-affinity (R) state, have been well established by X-ray crystallography1á€-7, but short-lived intermediates have proved less amenable to X-ray studies. Here we use chemical crosslinking to fix these intermediates for structural characterization. We describe the X-ray structures of three haemoglobins, α2β1S82β, α2β1Tm82β and α2β1,82Tm82β, which were crosslinked between the amino groups of residues βVal1 and βLys82 by 3,3′-stilbenedicarboxylic acid (S) or trimesic acid (Tm) while in the deoxy state, and saturated with carbon monoxide before crystallization. α2β1S82β, which has almost normal oxygen affinity, is completely in the R-state conformation; however, α2β1Tm82β and α2β1,82Tm82β, both of which have low oxygen affinity, have been prevented from completing their transition into the R state and display many features of a transitional intermediate. These haemoglobins therefore represent a snapshot of the nascent R state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175–220 (1979).

    Article  CAS  Google Scholar 

  2. Fermi, G., Perutz, M., Shaanan, B. & Fourme, R. J. molec. Biol. 175, 159–174 (1984).

    Article  CAS  Google Scholar 

  3. Shaanan, B. J. molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  4. Perutz, M. F. Nature 228, 726–739 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Dickerson, R. E. & Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology 3–63 (Benjamin/Cummings, Menlo Park, California, 1983).

    Google Scholar 

  6. Perutz, M. F. A. Rev. Physiol. 52, 1–25 (1990).

    Article  CAS  Google Scholar 

  7. Derewenda, Z. et al. J. molec. Biol. 211, 515–519 (1990).

    Article  CAS  Google Scholar 

  8. Jones, R. T. et al. Biochemistry 32, 215–223 (1993).

    Article  CAS  Google Scholar 

  9. Kluger, R. et al. Biochemistry 31, 7551–7559 (1992).

    Article  CAS  Google Scholar 

  10. Perutz, M. J. Crystal Growth 2, 54–56 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  Google Scholar 

  12. Fitzgerald, P. M. D. J. appl. Crystallogr. 21, 273–278 (1988).

    Article  CAS  Google Scholar 

  13. Silva, M. M., Rogers, P. H. & Arnone, A. J. biol. Chem. 267, 17248–17256 (1992).

    CAS  PubMed  Google Scholar 

  14. Smith, F. R., Lattman, E. E. & Carter, C. W. Jr Prot. Struct. Funct. Genet. 10, 81–91 (1991).

    Article  CAS  Google Scholar 

  15. Smith, F. R. & Simmons, K. C. Prot. Struct. Funct. Genet. 18, 295–300 (1994).

    Article  CAS  Google Scholar 

  16. Rodgers, K. R. & Spiro, T. G. Science 265, 1697–1699 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Liddington, R., Derewenda, Z., Dodson, G. & Harris, D. Nature 331, 725–728 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R. & Dodson, G. J. molec. Biol. 228, 551–579 (1992).

    Article  CAS  Google Scholar 

  19. Perutz, M. F. et al. J. molec. Biol. 138, 649–670 (1980).

    Article  CAS  Google Scholar 

  20. Martin de Llano, J. J. et al. J. biol. Chem. 268, 27004–27011 (1993).

    CAS  PubMed  Google Scholar 

  21. Franzen, S., Lambry, J. C., Bohn, B., Poyart, C. & Martin, J. L. Nature struct. Biol. 1, 230–233 (1994).

    Article  CAS  Google Scholar 

  22. Mukerji, I. & Spiro, T. G. Biochemistry 33, 13132–13139 (1994).

    Article  CAS  Google Scholar 

  23. Anfinrud, P. A., Han, C. & Hochstrasser, R. M. Proc. natn. Acad. Sci. U.S.A. 86, 8387–8391 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Lim, M., Jackson, T. A. & Anfinrud, P. A. Proc. natn. Acad. Sci. U.S.A. 90, 5801–5804 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Dixon, M., Kluger, R. et al. Allosteric transition intermediates modelled by crosslinked haemoglobins. Nature 375, 84–87 (1995). https://doi.org/10.1038/375084a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375084a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing