Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Explaining the spectrum of Sagittarius A* with a model of an accreting black hole

Abstract

THE radio source at the centre of our Galaxy1, Sagittarius A* (Sgr A*), seems to be a low-luminosity version of active galactic nuclei—a massive black hole that is accreting gas from the surrounding region1,2. This idea is supported by observations of the gas and stars within 1 pc of Sgr A*, which appear to move under the influence of a large central mass1,3,4. A recent determination of the upper limit5,6 to the hard X-ray emission from the Galactic Centre has posed a problem for this picture, however, as the mass accretion rate implied by applying a standard accretion model to the X-ray data is far below that estimated from the observations of gas flows. Here we present a new model of accretion onto Sgr A*, in which most of the energy released is carried along with the gas and lost into the black hole of mass 7 x 105 solar masses, rather than appearing as radiation. The model fits the observed spectrum of Sgr A* from radio to hard X-ray wavelengths, and reconciles the low observed luminosity with a high mass-accretion rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Genzel, R. & Townes, C. H. A. Rev. Astr. Astrophys. 25, 377–423 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Lynden-Bell, D. & Rees, M. Mon. Not. R. astr. Soc. 152, 461–475 (1971).

    Article  ADS  Google Scholar 

  3. Lacy, J. H., Achtermann, J. M. & Serabyn, E. Astrophys. J. 380, L71–L74 (1991).

    Article  ADS  Google Scholar 

  4. McGinn, J. T., Sellgren, K., Becklin, E. E. & Hall, D. N. B. Astrophys. J. 338, 824–840 (1989).

    Article  ADS  Google Scholar 

  5. Goldwurm, A. et al. Nature 371, 589–591 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Grindlay, J. E. Nature 371, 561–562 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Falcke, H., Biermann, P. L., Duschl, W. J. & Mezger, P. G. Astr. Astrophys. 270, 102–106 (1993).

    ADS  Google Scholar 

  8. Frank, J., King, A. & Raine, D. Accretion Power in Astrophysics (Cambridge Univ. Press. 1992).

    Google Scholar 

  9. Falcke, H., Mannheim, K. & Biermann, P. L. Astr. Astrophys. 278, L1–L4 (1993).

    ADS  Google Scholar 

  10. Abramowicz, M., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Astrophys. J. 332, 646–658 (1988).

    Article  ADS  Google Scholar 

  11. Honma, F., Matsumoto, R. & Kato, S. Publs astr. Soc. Japan 43, 147–168 (1991).

    ADS  Google Scholar 

  12. Narayan, R. & Popham, R. Nature 362, 820–822 (1993).

    Article  ADS  Google Scholar 

  13. Popham, R., Narayan, R., Hartmann, L. & Kenyon, S. Astrophys. J. 415, L127–L130 (1993).

    Article  ADS  Google Scholar 

  14. Narayan, R. & Yi, I. Astrophys. J. 428, L13–L16 (1994).

    Article  ADS  Google Scholar 

  15. Narayan, R. & Yi, I. Astrophys. J. 444, 231–243 (1995).

    Article  ADS  Google Scholar 

  16. Narayan, R. & Yi, I. Astrophys. J. (in the press).

  17. Abramowicz, M., Chen, X., Kato, S., Lasota, J. P. & Regev, O. Astrophys. J. 438, L37–L40 (1995).

    Article  ADS  Google Scholar 

  18. Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Nature 295, 17–21 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Shapiro, S. L., Lightman, A. P. & Eardley, D. M. Astrophys. J. 204, 187–199 (1976).

    Article  ADS  Google Scholar 

  20. Melia, F. Astrophys. J. 387, L25–L28 (1992).

    Article  ADS  Google Scholar 

  21. Shakura, N. I. & Sunyaev, R. A. Astr. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  22. Melia, F. Astrophys. J. 426, 577–585 (1994).

    Article  ADS  Google Scholar 

  23. Duschl, W. J. & Lesch, H. Astr. Astrophys. 286, 431–436 (1994).

    ADS  Google Scholar 

  24. Melia, F., Jokipii, J. R. & Narayanan, A. Astrophys. J. 395, L87–L90 (1992).

    Article  ADS  Google Scholar 

  25. Rogers, A. E. E. et al. Astrophys. J. 434, L59–L62 (1994).

    Article  ADS  Google Scholar 

  26. Backer, D. C. et al. Science 262, 1414–1416 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Zhao, J.-H., Ekers, R. D., Goss, W. M., Lo, K. Y. & Narayan, R. in The Center of the Galaxy (ed. Morris, M.) 535–538 (IAU Symp. No. 136, Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  28. Begelman, M. C. & Chiueh, T. Astrophys. J. 332, 872–890 (1988).

    Article  ADS  Google Scholar 

  29. Zylka, R., Mezger, P. G. & Lesch, H. Astr. Astrophys. 261, 119–129 (1992).

    ADS  Google Scholar 

  30. Zylka, R., Mezger, P. G., Ward-Thompson, D., Duschl, W. J. & Lesch, H. Astr. Astrophys. (in the press).

  31. Eckart, A. et al. Nature 355, 526–529 (1992).

    Article  ADS  Google Scholar 

  32. Rosa, M. R., Zinnecker, H., Moneti, A. & Melnick, J. Astr. Astrophys. 257, 515–522 (1991).

    ADS  Google Scholar 

  33. Pavlinskii, M. N., Grebenev, S. A. & Sunyaev, R. A. Soviet Astr. Lett. 18, 116–120 (1992).

    ADS  Google Scholar 

  34. Watson, M. G., Willingale, R., Grindlay, J. E. & Hertz, P. Astrophys. J. 250, 142–154 (1981).

    Article  ADS  CAS  Google Scholar 

  35. Pavlinskii, M. N., Grebenev, S. A. & Sunyaev, R. A. Astrophys. J. 425, 110–121 (1994).

    Article  ADS  Google Scholar 

  36. Predehl, P. & Trümper, J. Astr. Astrophys. 290, L29–L32 (1994).

    ADS  Google Scholar 

  37. Skinner, G. K. et al. Nature 330, 544–547 (1987).

    Article  ADS  Google Scholar 

  38. Kawai, N. et al. Astrophys. J. 330, 130–141 (1988).

    Article  ADS  CAS  Google Scholar 

  39. Skinner, G. K. in The Center of the Galaxy (ed. Morris, M.) 567–580 (IAU Symp. No. 136, Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R., Yi, I. & Mahadevan, R. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature 374, 623–625 (1995). https://doi.org/10.1038/374623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374623a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing