Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium controls light-triggered formation of catalytically active rhodopsin

Abstract

BACKGROUND light reduces the gain of phototransduction in retinal rods so that the ability to register changes in light intensity is not prevented by saturation of the cell's response1,2. The gain is reduced by a light-induced fall in the intracellular calcium concentration which results from blockage of Ca2+ entry through the channels closed by light and continued Ca2+ extrusion by the Na:Ca,K exchanger3–7. Calcium seems to exert several coordinated effects on the cyclic GMP cascade: a fall in [Ca2 + ] stimulates cGMP synthesis8,9, increases the affinity of the cGMP-gated channel for cGMP10 and accelerates rhodopsin deactivation by phosphorylation11. We now report that lowering intracellular [Ca2+ ] reduces the catalytic rhodopsin activity produced by light. The effect is operationally equivalent to a fourfold reduction in the number of rhodopsin molecules available for activation. The reduction in gain is cooperative and half-maximal at about 35 nM Ca2+ , suggesting that it is mediated by a specific Ca2+-binding protein. Reduced rhodopsin activity in low Ca2+ should contribute to adaptation in background light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, H. R., Murphy, R. L., Fain, G. L. & Lamb, T. D. Nature 334, 67–69 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Nakatani, K. & Yau, K.-W. Nature 334, 69–71 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Yau, K.-W. & Nakatani, K. Nature 313, 579–582 (1985).

    Article  ADS  CAS  Google Scholar 

  4. McNaughton, P. A., Cervetto, L. & Nunn, B. J. Nature 322, 261–263 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Cervetto, L., Lagnado, L., Perry, R. J., Robinson, D. W. & McNaughton, P. A. Nature 337, 740–743 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Lagnado, L., Cervetto, L. & McNaughton, P. A. J. Physiol., Lond. 455, 111–142 (1992).

    Article  CAS  Google Scholar 

  7. Lagnado, L. & Baylor, D. A. Neuron 8, 995–1002 (1992).

    Article  CAS  Google Scholar 

  8. Lolley, R. N. & Racz, E. Vision Res. 22, 1481–1486 (1982).

    Article  CAS  Google Scholar 

  9. Koch, K. W. & Stryer, L. Nature 334, 64–66 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hsu, Y.-T. & Molday, R. S. Nature 361, 76–79 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Kawamura, S. Nature 362, 855–857 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Lamb, T. D., McNaughton, P. A. & Yau, K.-W. J. Physiol., Lond. 319, 463–496 (1981).

    Article  CAS  Google Scholar 

  13. Fain, G. L. J. Physiol., Lond. 261, 71–101 (1976).

    Article  CAS  Google Scholar 

  14. Lamb, T. D. & Pugh, E. N. J. Physiol., Lond. 449, 719–757 (1992).

    Article  CAS  Google Scholar 

  15. Baylor, D. A. & Hodgkin, A. L. J. Physiol., Lond. 242, 729–758 (1974).

    Article  CAS  Google Scholar 

  16. McCarthy, S. T. thesis, Univ. California, Berkeley (1993).

  17. Younger, J. P., McCarthy, S. T. & Owen, W. G. Invest. Ophthal. Vis. Sci. 33, 1104 (1992).

    Google Scholar 

  18. Kawamura, S. & Murakami, M. Nature 349, 420–423 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol., Lond. 372, 54P (1986).

    Google Scholar 

  20. Persechini, A., Moncrief, N. D. & Kretsinger, R. H. Trends Neurosci. 12, 462–467 (1989).

    Article  CAS  Google Scholar 

  21. Dizhoor, A. M. et al. Science 251, 915–918 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Nakatani, K. & Yau, K.-W. J. Physiol., Lond. 395, 731–753 (1988).

    Article  CAS  Google Scholar 

  23. Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol., Lond. 288, 589–611 (1979).

    CAS  PubMed  Google Scholar 

  24. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol., Lond. 358, 447–468 (1985).

    Article  CAS  Google Scholar 

  25. Fabiato, A. & Fabiato, J. J. Physiol., Paris 75, 463–505 (1979).

    CAS  Google Scholar 

  26. Wilden, U., Hall, S. W. & Kuhn, H. Proc. natn. Acad. Sci. U.S.A. 83, 1174–1178 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Lamb, T. D., Matthews, H. R. & Torre, V. J. Physiol., Lond. 372, 315–349 (1986).

    Article  CAS  Google Scholar 

  28. Koch, K.-W., Eckstein, F. & Stryer, L. J. biol. Chem. 265, 9659–9663 (1990).

    CAS  PubMed  Google Scholar 

  29. Gordon, S. E., Brautigan, D. L. & Zimmerman, A. L. Neuron 9, 739–748 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagnado, L., Baylor, D. Calcium controls light-triggered formation of catalytically active rhodopsin. Nature 367, 273–277 (1994). https://doi.org/10.1038/367273a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367273a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing