Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genetic analysis of senescence in Drosophila

Abstract

TWO attractive theories for the evolution of senescence are based on the principle that the force of natural selection decreases with age1–5. The theories differ in the type of age-specific gene action that they assume. Antagonistic pleiotropy2–5 postulates that pleiotropic genes with positive effects early in life and negative effects of comparable magnitude late in life are favoured by selection, whereas genes with the reverse pattern of action are selected against. Mutation accumulation1,3–5 assumes that deleterious mutant alleles with age-specific effects will equilibrate at a lower frequency if their effects are expressed early rather than late in life. Explicit models demonstrate that both mechanisms can lead to the evolution of senescent life histories under reasonable conditions3–5. Antagonistic pleiotropy has gained considerable empirical support4–6, but the evidence in support of mutation accumulation is more sparse4,5,7. Here we report that the genetic variability of mortality in male Drosophila melanogaster increases greatly at very late ages, as predicted by the mutation accumulation hypothesis3–5. The rate of increase in mortality with age exhibits substantial genetic and environmental variability. This result provides a possible explanation for recent observations of non-increasing mortality rates in very old flies8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Medawar, P. B. An Unsolved Problem of Biology (Lewis, London, 1952).

    Google Scholar 

  2. Williams, G. C. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  3. Charlesworth, B. Evolution in Age-structured Populations (Cambridge Univ. Press, Cambridge, 1980).

    MATH  Google Scholar 

  4. Rose, M. R. The Evolutionary Biology of Aging (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  5. Partridge, L. & Barton, N. H. Nature 362, 305–311 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Service, P. M. Evolution 47, 387–399 (1993).

    Article  Google Scholar 

  7. Roper, C., Pignatelli, P. & Partridge, L. Evolution 47, 445–455 (1993).

    PubMed  Google Scholar 

  8. Carey, J. R., Liedo, P., Orzco, D. & Vaupel, J. W. Science 258, 457–460 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Curtsinger, J. W., Fukui, H. H., Townsend, D. R. & Vaupel, J. W. Science 258, 461–463 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Charlesworth, B. & Charlesworth, D. Heredity 54, 71–84 (1985).

    Article  Google Scholar 

  11. Falconer, D. S. Introduction to Quantitative Genetics (Longman, London, 1989).

    Google Scholar 

  12. Charlesworth, B. in Sexual Selection: Testing the Alternatives (eds Bradbury, J. W. & Andersson, M. B.) 21–40 (Wiley, Chichester, 1987).

    Google Scholar 

  13. Charlesworth, B. Evolution 44, 520–538 (1990).

    Article  Google Scholar 

  14. Finch, C. E. Longevity, Senescence, and the Genome (Univ. Chicago Press, Chicago, 1990).

    Google Scholar 

  15. Finch, C. E., Pike, M. C. & Whitten, M. Science 249, 902–905 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Rose, M. R. & Charlesworth, B. Genetics 97, 173–186 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright, S. Evolution and the Genetics of Populations Vol. 3, Experimental Results and Evolutionary Deductions (Univ. Chicago Press, Chicago, 1977).

    Google Scholar 

  18. Hartley, H. O. Biometrics 23, 105–114 (1967).

    Article  MathSciNet  CAS  Google Scholar 

  19. Searle, S. R. Biometrics 27, 1–76 (1971).

    Article  MathSciNet  Google Scholar 

  20. Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. Genetics 78, 1195–1208 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rose, M. R. Evolution 38, 516–526 (1984).

    Article  ADS  Google Scholar 

  22. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, 1992).

    Google Scholar 

  23. Engels, W. R. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) (Am. Soc. Microbiol., Washington DC, 1989).

    Google Scholar 

  24. Comstock, R. E. & Robinson, H. F. in Heterosis (eds Gowen, J. W.) (Iowa State College Press, Ames, 1952).

    Google Scholar 

  25. Houle, D. Genetics 130, 195–204 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, K., Charlesworth, B. A genetic analysis of senescence in Drosophila. Nature 367, 64–66 (1994). https://doi.org/10.1038/367064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing