Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for transformational faulting from a deep double seismic zone in Tonga

Abstract

DOUBLE seismic zones, planes or earthquakes parallel to the dip of a subducting slab and separated by 20–40 km, provide important clues about the earthquake generating mechanisms and strain distribution inside subducting slabs. Double seismic zones have been found at intermediate depths (70–200 km) in many subduction zones1–6 but have not been previously reported in deep slabs. Here, by relocating earthquakes with a hypocentroidal decomposition technique7 and visualizing the earthquake positions and uncertainties in three dimensions, we identify a double seismic zone at depths of 350–460 km in the Tonga subduction zone. Source parameters of the earthquakes determined by waveform analysis suggest different stress orientations for the two zones, with in-plane compression in the lower zone and in-plane tension in the upper zone. The double zone may be due to transformational faulting, as olivine along the edges of a metastable olivine wedge becomes warmer and transforms to spinel8–11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Umino, N. & Hasegawa, A. J. Selsmol. Soc. Jap. Ser. 2 28, 125–139 (1975).

    Google Scholar 

  2. Isacks, B. L. & Barazangi, M. Geometry of the Beniof Zones: Lateral Segmentation and Downwards Bending of the Subjected Lithosphere Vol. 1, 99–114 (Am. Geophys. Un., Washington DC, 1977).

    Google Scholar 

  3. Hasegawa, A., Umino, N. & Takagi, A. Tectonophysics 47, 43–58 (1978).

    Article  ADS  Google Scholar 

  4. Fujita, K. & Kanamori, H. Geophys. J. R. astr. Soc. 66, 131–156 (1981).

    Article  ADS  Google Scholar 

  5. Kawakatsu, H. Nature 316, 53–55 (1985).

    Article  ADS  Google Scholar 

  6. Abers, G. A. Geophys. Res. Lett. 19, 2019–2022 (1992).

    Article  ADS  Google Scholar 

  7. Jordan, T. H. & Sverdrup, K. A. Bull. seism. Soc. Am. 71, 1105–1130 (1981).

    Google Scholar 

  8. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Kirby, S. H., Durham, W. B. & Stern, L. A. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  11. Green, H. W., Young, T. E., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Fuchs, K. & Muller, G. Geophys. J. R. Astr. Soc. 23, 417–433 (1971).

    Article  ADS  Google Scholar 

  13. Kennett, B. L. N. Seismic Wave Propagation in Stratified Media 1–339 (Cambridge Univ. Press, 1983).

    Google Scholar 

  14. Kawakatsu, H. J. geophys. Res. 91, 6432–6440 (1986).

    Article  ADS  Google Scholar 

  15. Giardini, D. & Woodhouse, J. H. Nature 307, 505–509 (1984).

    Article  ADS  Google Scholar 

  16. Yoshii, T. Tectonophysics 55, 349–360 (1979).

    Article  ADS  Google Scholar 

  17. Sleep, N. H. J. geophys. Res. 84, 4565–4571 (1979).

    Article  ADS  Google Scholar 

  18. Kawakatsu, H. J. geophys. Res. 91, 4811–4825 (1986).

    Article  ADS  Google Scholar 

  19. Schubert, G., Yuen, D. A. & Turcotte, D. L. Geophys. J. R. Astr. Soc. 42, 705–735 (1975).

    Article  Google Scholar 

  20. Vidale, J. E. & Benz, H. M. Nature 356, 678–683 (1992).

    Article  ADS  Google Scholar 

  21. Sung, C. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Rubie, D. C. & Ross, C. R. EOS 73, 378 (1992).

    Article  Google Scholar 

  23. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–255 (1991).

    Article  ADS  Google Scholar 

  24. Helffrich, G. & Brodholt, J. Nature 352, 252–255 (1991).

    Article  ADS  Google Scholar 

  25. Houston, H. & Williams, Q. Nature 352, 520–522 (1991).

    Article  ADS  Google Scholar 

  26. Toksoz, M. N., Sleep, N. H. & Smith, A. T. Geophys. J. R. Astr. Soc. 35, 285–310 (1973).

    Article  Google Scholar 

  27. Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Akaogi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  29. Goto, K., Suzuki, Z. & Hamaguchi, H. J. geophys. Res. 92, 13811–13820 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Bevis, M. et al. EOS 72, 115 (1991).

    Article  Google Scholar 

  31. Richter, F. M. J. geophys. Res. 84, 6783–6795 (1979).

    Article  ADS  Google Scholar 

  32. Dziewonski, A. M., Chou, T. & Woodhouse, J. H. J. geophys. Res. 86, 2825–2852 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiens, D., McGuire, J. & Shore, P. Evidence for transformational faulting from a deep double seismic zone in Tonga. Nature 364, 790–793 (1993). https://doi.org/10.1038/364790a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364790a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing