Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radial deformation of carbon nanotubes by van der Waals forces

Abstract

THE discovery of carbon nanotubes1,2 has stimulated many theoretical studies of their physical properties3–12, and their bulk synthesis13 should soon make possible experimental measurements of these properties14. All studies so far have assumed that the nanotubes have perfect cylindrical symmetry. Here we show that van der Waals forces between adjacent nanotubes can deform them substantially, destroying this cylindrical symmetry. We present transmission electron microscopy images of two adjacent aligned tubes, about 100 Å in diameter, which show flattening of the tubes along the contact region. Calculations on two-layer nested nanotubes indicate that these deformations can be explained on the basis of van der Waals interactions. We predict that these effects should be observable at least for tubes as small as 20 Å in diameter, and suggest that they may have a significant influence on the tubes' physical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iijima, S. Nature 354, 56–58 (1992).

    Article  ADS  Google Scholar 

  2. Ajayan, P. M. & Iijima, S. Nature 358, 23 (1992).

    Article  ADS  Google Scholar 

  3. Iijima, S., Ichihashi, T. & Ando, Y. Nature 356, 776–778 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Iijima, S., Ajayan, P. M. & Ichihashi, T. Phys. Rev. Lett. 69, 3100–3103 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Phys. Rev. B—Condensed Matter 46, 1804–1811 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Fujita, M., Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Phys. Rev. B—Condensed Matter 45, 13834–13836 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Phys. Rev. B—Condensed Matter 45, 6234–6242 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Jishi, R. A. & Dresselhaus, M. S. Phys. Rev. B—Condensed Matter 45, 11305–11311 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Mintmire, J. W., Dunlap, B. I. & White, C. T. Phys. Rev. Lett. 68, 631–634 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Mintmire, J. W. et al. MRS Symp. Proc. 247, 339–343 (1992).

    Article  CAS  Google Scholar 

  11. Sawada, S. I. & Hamada, N. Solid State Commun. 83, 917–919 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Tersoff, J. Phys. Rev. B46, 15546–15549 (1992).

    Article  CAS  Google Scholar 

  13. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Dresselhaus, M. S. Nature 358, 195–196 (1992).

    Article  ADS  Google Scholar 

  15. Isrealachvili, J. N. Intermolecular and Surface Forces, with Applications to Colloidal and Biological Systems 2nd edn. (Academic, London, 1991).

    Google Scholar 

  16. Girifalco, L. A. J. phys. Chem. 96, 858–861 (1992).

    Article  CAS  Google Scholar 

  17. Guo, Y. J., Karasawa, N. & Goddard, W. A. II Nature 351, 464–467 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Cheng, A. L. & Klein, M. L. J. phys. Chem. 95, 6750–6751 (1991).

    Article  CAS  Google Scholar 

  19. Cheng, A. L. & Klein, M. L. Phys. Rev. B—Condensed Matter 45, 1889–1895 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Sprik, M., Cheng, A. L. & Klein, M. L. Phys. Rev. Lett. 69, 1660–1663 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Girifalco, L. A. & Ladd, R. A. J. chem. Phys. 25, 693–697 (1956).

    Article  ADS  CAS  Google Scholar 

  22. Ruoff, R. S. & Hickman, A. P. J. phys. Chem. 97, 2494–2496 (1993).

    Article  CAS  Google Scholar 

  23. Tersoff, J. Phys. Rev. Lett. 61, 2879–2882 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Ge, M. & Sattler, K. Science 260, 515–518 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R. & Subramoney, S. Science 259, 346–348 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruoff, R., Tersoff, J., Lorents, D. et al. Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993). https://doi.org/10.1038/364514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364514a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing