Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intercellular signalling in Drosophila segment formation reconstructed in vitro

Abstract

GENETIC studies show that intercellular signalling is involved in key steps in Drosophila melanogaster development, but it has not previously been possible to investigate these processes in simplified in vitro systems. Analysis of engrailed (en) and wingless (wg) and other segment polarity genes suggests that two or more intercellular signalling processes may be involved in intrasegmental patterning1–3. Expression of en and wg begins about three hours after egg laying, in adjacent rows of cells in the posterior half of each segmental primordium4–7. In wg embryos and in conditional mutants in which wg function is inactivated during a critical period between three and five hours after egg laying, early en expression begins normally but then disappears within several hours4,8–10. The wg gene encodes a protein highly similar to the product of the mouse Wnt-1 proto-oncogene, a secreted glycoprotein11,12; wg protein is proposed to function as an extracellular signal, maintaining en expression and activating other molecular and morphogenetic processes in nearby cells4,8,9,13. Several lines of evidence support the model, including the secretion of wg protein in the embryo7,14, genetic mosaic experiments15–17 and cell lineage studies18. We tested this model using purified embryonic cells isolated by whole animal cell sorting19, and validated three key predictions: (1) when en-expressing cells from early embryos are grown alone in culture, they rapidly and selectively lose en expression; (2) purified wg-expressing cells provide a locally active signal that prevents this loss; (3) heterologous cells engineered to express wg also show signalling activity, indicating that wg protein alone, or in conjunction with more generally expressed factors, is the signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingham, P. W. Curr. Opin. Genet. Dev. 1, 261–267 (1991).

    Article  CAS  Google Scholar 

  2. DiNardo, S. & Heemskerk, J. Sem. Cell Biol. 1, 173–183 (1990).

    CAS  Google Scholar 

  3. Ingham, P. W. & Martinez Arias, A. Cell 68, 221–235 (1992).

    Article  CAS  Google Scholar 

  4. Martinez Arias, A., Baker, N. E. & Ingham, P. W. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  5. Kornberg, T., Siden, I., O'Farrell, P. & Simon, M. Cell 40, 45–53 (1985).

    Article  CAS  Google Scholar 

  6. Baker, N. E. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

  7. van den Heuvel, M., Nusse, R., Johnstone, P. & Lawrence, P. A. Cell 59, 739–749 (1989).

    Article  CAS  Google Scholar 

  8. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A. & O'Farrell, P. H. Nature 332, 604–609 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Bejsovec, A. & Martinez Arias, A. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  10. Heemskerk, J., DiNardo, S., Kostriken, R. & O'Farrell, p. Nature 352, 404–410 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Rijsewijk, F. et al. Cell 50, 649–657 (1987).

    Article  CAS  Google Scholar 

  12. Nusse, R. & Varmus, H. E. Cell 69, 1073–1087 (1992).

    Article  CAS  Google Scholar 

  13. Riggleman, R., Schedl, P. & Wieschaus, E. Cell 63, 549–560 (1990).

    Article  CAS  Google Scholar 

  14. Gonzalez, F., Swales, L., Bejsovec, A., Skaer, H. & Martinez Arias, A. Mech. Dev. 35, 43–54 (1991).

    Article  CAS  Google Scholar 

  15. Morata, G. & Lawrence, P. A. Devl Biol. 56, 227–240 (1977).

    Article  CAS  Google Scholar 

  16. Baker, N. E. Devl Biol. 125, 96–108 (1988).

    Article  CAS  Google Scholar 

  17. Wieschaus, E. & Riggleman, R. Cell 49, 177–184 (1987).

    Article  CAS  Google Scholar 

  18. Vincent, J. P. & O'Farrell, P. Cell 68, 923–931 (1992).

    Article  CAS  Google Scholar 

  19. Krasnow, M. A., Cumberledge, S., Manning, G., Herzenberg, L. A. & Nolan, G. P. Science 251, 81–85 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Schneider, I. J. Embryol. exp. Morph. 27, 353–365 (1972).

    CAS  PubMed  Google Scholar 

  21. Hama, C., Ali, Z. & Kornberg, T. B. Genes Dev. 4, 1079–1093 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumberledge, S., Krasnow, M. Intercellular signalling in Drosophila segment formation reconstructed in vitro. Nature 363, 549–552 (1993). https://doi.org/10.1038/363549a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363549a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing