Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genomic mutation rate for fitness in Drosophila

A Correction to this article was published on 22 September 1994

Abstract

THE mutation rate per genome for local affecting fitness is crucial in theories of the evolution of sex and recombination1,2 and of outbreeding mechanisms3. Mutational variation in fitness may also be important in the evolution of mate choice in animals2,4,5. No information is available on the rate at which spontaneous mutations with small effects on fitness arise, although viability (probability of survival to adulthood) has been studied in Drosophila melanogaster6–9. These experiments involved the accumulation of spontaneous mutations in the virtual absence of natural selection, in a set of independently maintained lines with a common origin. The rates of decline in mean and increase in variance among lines permit estimation of limits to the mean number of new mutations arising per generation (U) and the average homozygous effect of a new mutation of minor effect (s)7,9,10. For the second chromosome of D. melanogaster, the value of U is at least 0.17 (ref. 7), and (1 – h)s is less than 0.02, where hsis the average decline in fitness of heterozygotes. As the second chromosome is about 40% of the genome, these data indicate a mutation rate per haploid genome of at least 0.42 for viability. Here we present similar data on the effects of homozygous spontaneous mutations on a measure of fitness in D. melanogaster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crow, J. F. in Mathematical Topics in Population Genetics (ed. Kojima, K.-I.) 128–177 (Springer, Berlin, 1970).

    Book  Google Scholar 

  2. Kondrashov, A. S. Nature 336, 435–440 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Charlesworth, D. & Charlesworth, B. A. Rev. Ecol. Syst. 18, 237–268 (1987).

    Article  Google Scholar 

  4. Charlesworth, B. in Sexual Selection: Testing the Alternatives (eds Bradbury, J. W. & Andersson, M. B.) 21–40 (Wiley, Chichester, 1987).

    Google Scholar 

  5. Kirkpatrick, M. & Ryan, M. J. Nature 350, 33–38 (1991).

    Article  ADS  Google Scholar 

  6. Mukai, T. Genetics 50, 1–19 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. Genetics 72, 335–355 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohnishi, O. Genetics 87, 529–545 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila, Vol. 3C (eds Ashburner, M., Carson, H. L. & Thomson, J. N.) 1–35 (Academic, London, 1983).

    Google Scholar 

  10. Bateman, A. J. Int. J. Radiat. Biol. 2, 170–180 (1959).

    Google Scholar 

  11. Sved, J. A. Genet. Res. Camb. 18, 97–105 (1971).

    Article  CAS  Google Scholar 

  12. Ashburner, M. Drosophila. A Laboratory Handbook (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  13. Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, San Francisco, 1981).

    MATH  Google Scholar 

  14. Simmons, M. J., Preston, C. R. & Engels, W. R. Genetics 94, 467–475 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukai, T. & Yamazaki, T. Genetics 69, 385–398 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshimaru, H. & Mukai, T. Jap. J. Genet. 60, 307–334 (1985).

    Article  Google Scholar 

  17. Mukai, T. Genetics 61, 749–761 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Charlesworth, B., Charlesworth, D. & Morgan, M. T. Nature 347, 380–382 (1990).

    Article  ADS  Google Scholar 

  19. Charlesworth, B. & Charlesworth, D. Heredity 54, 71–84 (1985).

    Article  Google Scholar 

  20. Lindsley, D. L. & Grell, E. H. Genetic Variations of Drosophila melanogaster (Carnegie Institute, Washington, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houle, D., Hoffmaster, D., Assimacopoulos, S. et al. The genomic mutation rate for fitness in Drosophila. Nature 359, 58–60 (1992). https://doi.org/10.1038/359058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing