Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA electrophoresis in microlithographic arrays

Abstract

WE have used optical microlithography to fabricate capped quasi-two-dimensional obstacle courses in SiO2. We report here observations using epifluorescence microscopy of the electrophoresis and length fractionation of large DNA molecules confined in arrays. Simple reptation theory, based on the work of deGennes1, predicts that at low electric fields the electrophoretic mobility of a polymer of length L much greater than the persistence length p scales inversely with L (ref. 2). But elongation of the coil in the matrix at sufficiently strong electric fields3 results in a length-independent electrophoretic mobility4,5. The application of suitably timed pulsed electric fields restores the fractionating power of gels for long molecules6 but the protocols of pulsed-field electrophoresis are semi-empirical because the complex and ill-understood gel matrix plays a critical role in fractionation. Microlithographically constructed obstacle arrays, with their low dimensionality, small volume and extremely reproducible topography, will make it possible to understand the motion and fractionation of large polymer molecules in complex but well characterized topologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeGennes, P. Scaling Concepts in Polymer Physics 4th edn, 223–233 (Cornell Univ. Press, Ithaca, New York, 1991).

    Google Scholar 

  2. Lerman, L. S. & Frisch, H. L. Biopolymers 21, 995–997 (1982).

    Article  CAS  Google Scholar 

  3. Smith, S. B., Aldridge, P. K. & Callis, J. B. Science 243, 203–206 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Hervet, H. & Bean, C. P. Biopolymers 26, 727–742 (1987).

    Article  CAS  Google Scholar 

  5. Lumkin, O. J., Dejardin, P. & Zimm, B. H. Biopolymers 24, 1573–1593 (1985).

    Article  Google Scholar 

  6. Schwartz, D. C. & Cantor, C. R. Cell 37, 67–75 (1984).

    Article  CAS  Google Scholar 

  7. Hagerman, P. J. A. Rev. Biophys. biophys. Chem. 17, 265–286 (1988).

    Article  CAS  Google Scholar 

  8. Morikawa, K. & Yanagida, M. J. Biochem. 89, 693–696 (1981).

    Article  CAS  Google Scholar 

  9. Bustamante, C. A. Rev. Biophys. biophys. Chem. 20, 415–446 (1991).

    Article  CAS  Google Scholar 

  10. Schwartz, D. C. & Koval, M. Nature 338, 520–522 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Schurr, J. M. & Smith, S. B. Biopolymers 29, 1161–1165 (1990).

    Article  CAS  Google Scholar 

  12. Holmes, D. & Stellwagen, N. Electrophoresis 11, 5–15 (1990).

    Article  CAS  Google Scholar 

  13. Deutsch, J. M. & Madden, T. L. J. chem. Phys. 90, 2476–2485 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Manning, G. S. J. chem. Physics 51, 924–933 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Kozak, M. W. & Davis, E. J. Langmuir 6, 1585–1590 (1990).

    Article  CAS  Google Scholar 

  16. Serwer, P. Electrophoresis 10, 327–331 (1989).

    Article  CAS  Google Scholar 

  17. Lalande, M. et al. Nucleic Acids Res. 16, 5427–5437 (1988).

    Article  CAS  Google Scholar 

  18. Song, L. & Maestre, M. F. J. biomolec. Struc. Sterodynamics 9, 87–99 (1991).

    Article  CAS  Google Scholar 

  19. Wallis, G. & Pomerantz, D. I. J. appl. Phys. 40, 3946–3949 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmuth, W., Austin, R. DNA electrophoresis in microlithographic arrays. Nature 358, 600–602 (1992). https://doi.org/10.1038/358600a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358600a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing