Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytotoxic T-lymphocyte activation involves a cascade of signalling and adhesion events

Abstract

IN addition to the antigen-specific T-cell receptor (TCR), T cells bear an array of 'accessory' molecules that can contribute to stable adhesion to the antigen-bearing cell1 and provide costimulatory signals1–7. For several of these2–7, T-cell adhesion to the ligand can be activated by TCR-dependent signalling (a signal from the TCR primes the coreceptor to bind to its ligand). It is unclear whether the individual coreceptors share common mechanisms of priming and cosignalling, and perhaps act in a redundant manner, or whether they act in a distinct way and contribute uniquely to the activation process. We report here the use of isolated alloantigen, class I proteins and fibronectin ligands to show that coreceptors on cytotoxic T lymphocytes are activated sequentially and deliver distinct biochemical signals on binding to their ligands. TCR engagement activates CDS by a protein ryrosine kinasedependent pathway, and CDS then acts as a signal for initiation of polyphosphoinositide hydrolysis on binding to class I. In contrast, activated adhesion to fibronectin does not initiate polyphos- phoinositide hydrolysis, but amplifies hydrolysis once it has been initiated. Thus, cytotoxic T-lymphocyte activation involves a TCR-initiated cascade of adhesion and signalling events leading to response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Springer, T. A. Nature 346, 425–434 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Dustin, M. L. & Springer, T. A. Nature 341, 619–624 (1989).

    Article  ADS  CAS  Google Scholar 

  3. O'Rourke, A. M., Rogers, J. & Mescher, M. F. Nature 346, 187–189 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Shimizu, Y., van Seventer, G. A., Horgan, K. J. & Shaw, S. Nature 345, 250–253 (1990).

    Article  ADS  CAS  Google Scholar 

  5. van Seventer, G. A., Shimizu, Y., Horgan, K. J. & Shaw, S. J. Immun. 144, 4579–4586 (1990).

    CAS  PubMed  Google Scholar 

  6. Shimizu, Y., van Seventer, G. A., Horgan, K. J. & Shaw, S. J. Immun. 145, 59–67 (1990).

    CAS  PubMed  Google Scholar 

  7. van Seventer, G. A. et al. J. exp. Med. 174, 901–913 (1991).

    Article  CAS  Google Scholar 

  8. O'Rourke, A. M. & Mescher, M. F. J. biol. Chem. 263, 18594–18597 (1988).

    Article  CAS  Google Scholar 

  9. June, C. H., Fletcher, M. C., Ledbetter, J. A. & Samelson, L. E. J. Immun. 144, 1591–1599 (1990).

    CAS  PubMed  Google Scholar 

  10. Mustelin, T., Coggeshall, K. M., Isakov, N. & Altman, A. Science 247, 1584–1587 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Nakauchi, H. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5126–5130 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Panaccio, M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6874–6878 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Veillette, A., Zuniga-Pflucker, J. C., Boien, J. B. & Kruisbeek, A. M. J. exp. Med 170, 1671–1680 (1989).

    Article  CAS  Google Scholar 

  14. Secrist, J. P., Karnitz, L. & Abraham, R. T. J. biol. Chem. 266, 12135–12139 (1991).

    Article  CAS  Google Scholar 

  15. Weiss, A., Koretzky, G., Schatzman, R. C. & Kadlecek, T. Proc. natn. Acad. Sci. U.S.A. 88, 5484–5488 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Barber, E. K., Dasgupta, J. D., Schlossman, S. F., Trevillyan, J. M. & Rudd, C. E. Proc. natn. Acad. Sci. U.S.A. 86, 3277–3281 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Dasgupta, J. D. et al. J. exp. Med. 175, 285–288 (1992).

    Article  CAS  Google Scholar 

  18. Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C. & Juliano, R. L. Proc. natn. Acad. Sci. U.S.A. 88, 8392–8396 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Nojima, Y., Rothstein, D. M., Sugita, K., Schlossman, S. F. & Morimoto, C. J. exp. Med. 175, 1045–1053 (1992).

    Article  CAS  Google Scholar 

  20. Siu, G., Hedrick, S. M. & Brian, A. A. J. Immun. 143, 3813–3820 (1989).

    CAS  PubMed  Google Scholar 

  21. Kane, K. P. & Mescher, M. F. J. Immun. 144, 824–829 (1990).

    CAS  PubMed  Google Scholar 

  22. Kane, K. P., Sherman, L. A. & Mescher, M. F. J. Immun. 142, 4153–4160 (1989).

    CAS  PubMed  Google Scholar 

  23. Kane, K. P., Champoux, P. & Mescher, M. F. Molec. Immun. 26, 759–768 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Rourke, A., Mescher, M. Cytotoxic T-lymphocyte activation involves a cascade of signalling and adhesion events. Nature 358, 253–255 (1992). https://doi.org/10.1038/358253a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358253a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing