Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crumpled and collapsed conformation in graphite oxide membranes

Abstract

MEMBRANES composed of bilayers of amphiphiles such as phospholipids generally exhibit two-dimensional liquid-like structure within the layers. When the constituent molecules of such a membrane are permanently cross-linked to each other, the membrane becomes less flexible, forming a two-dimensional solid. Solid membranes are expected to exhibit very different behaviour from their liquid counterparts1–3, including transitions between a two-dimensional flat phase, a crumpled phase of fractal dimension 2.5 and a compact, three-dimensional phase. Experimental evidence for the crumpled phase has, however, been lacking. As this phase was not observed in computer simulations4–6, it has been suggested that it may always be absent for self-avoiding (and therefore all real) membranes4–6. To the contrary, we report here the experimental observation of the crumpled conformation in an aqueous suspension of graphite oxide membranes. Static light scattering measurements indicate the presence of membrane conformations with a fractal dimension of 2.54 ±0.05. As the intra-membrane affinity is enhanced by changing the composition of the solvent, the membranes collapse to a compact configuration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lipowsky, R. Nature 349, 475–481 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Statistical Mechanics of Membranes and Surfaces (eds Nelson, D. R., Piran, T. & Weinberg, S.) (World Scientific, Singapore, 1989).

  3. Kantor, Y., Kardar, M. & Nelson, D. R. Phys. Rev. Lett. 57, 791–794 (1986); Phys. Rev. A35, 3056–3071 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Plischke, M. & Boal, D. H. Phys. Rev. A38, 4943–4945 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Abraham, F. F., Rudge, W. E. & Plischke, M. Phys. Rev. Lett. 62, 1757–1759 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Ho, J.-S. & Baumgartner, A. Phys. Rev. Lett. 63, 1324 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Kantor, Y. & Nelson, D. R. Phys. Rev. Lett. 58, 2774–2777 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Paczuski, M., Kardar, M. & Nelson, D. R. Phys. Rev. Lett. 60, 2638–2640 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Mandelbrot, B. The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  10. Abraham, F. F. & Kardar, M. Science 252, 419–422 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Abraham, F. F. & Nelson, D. R. J. Phys. (France) 51, 2653–2672 (1990).

    Article  CAS  Google Scholar 

  12. Brodie, B. Phil. Trans. 149, 249–251 (1859)

    Article  Google Scholar 

  13. Hummers, W. S. & Offeman, R. E. J. Am. chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  14. Boehm, H. P., Glauss, A., Fischer, G. & Hofmann, U. Z. Naturforsch. 17, 150–153 (1962).

    Article  ADS  Google Scholar 

  15. Hwa, T., Kokufuta, E. & Tanaka, T. Phys. Rev. A44, R2235–2237 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Chianelli, R. R., Prestride, E. B., Pecoraro, T. A. & DeNeufville, J. P. Science 203, 1105–1107 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Mutz, M., Bensimon, D. & Brienne, M. J. Phys. Rev. Lett. 67, 923–926 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Martin, J. E. & Hurd, A. J. J. appl. Cryst. 20, 61–78 (1987).

    Article  CAS  Google Scholar 

  19. Gomes, M. A. F., & Vasconcelos, G. L. Phys. Rev. Lett. 60, 237 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Kantor, Y., Kardar, M. & Nelson, D. R. Phys. Rev. Lett. 60, 238 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Nelson, D. R. & Radzihovsky, L. Europhys. Lett. 16, 79–84 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X., Garland, C., Hwa, T. et al. Crumpled and collapsed conformation in graphite oxide membranes. Nature 355, 426–428 (1992). https://doi.org/10.1038/355426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing