Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arachidonic acid elicits a substrate-gated proton current associated with the glutamate transporter EAAT4

Abstract

Arachidonic acid modulates both electrical and biochemical properties of membrane proteins involved in cellular signaling. In Xenopus laevis oocytes expressing the excitatory amino acid transporter EAAT4, physiologically relevant concentrations of arachidonic acid increase the amplitude of the substrate-activated current by roughly twofold at -60 mV. This stimulation is not attributable to the modulation of either substrate/ion cotransport or the ligand-gated chloride current, the major conductance associated with this carrier. Ion-substitution experiments reveal that arachidonic acid stimulates a proton-selective conductance. The effect does not require metabolism of arachidonic acid and is not blocked by inhibitors of endogenous oocyte ion-exchangers. This proton conductance expands the complex repertoire of the ligand-gated channel properties associated with EAAT4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative traces of the effects of L-Asp, arachidonic acid and L-Asp plus arachidonic acid on currents in water-injected and EAAT4-expressing Xenopus oocytes voltage-clamped at -60 mV.
Figure 2: Concentration dependence of the stimulation of the L-Asp-induced current by arachidonic acid and the effects of PUFAs on the L-Asp-induced current in EAAT4-expressing oocytes voltage-clamped at -60 mV.
Figure 3: Effects of arachidonic acid on the concentration response curves for [3H]L-Asp flux and L-Asp-induced currents.
Figure 4: Representative current–voltage curves for L-Asp and arachidonic acid in EAAT4-expressing and uninjected Xenopus oocytes.
Figure 5: Influence of ion substitutions on L-Asp-induced currents and arachidonic acid-stimulated L-Asp currents.
Figure 6: Dependence on pH of the L-Asp-induced and the arachidonic acid-stimulated current in chloride-depleted conditions.
Figure 7: Effects of D2O substitution on translocation and EAAT4 currents.

Similar content being viewed by others

References

  1. Arriza, J.L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559 –5569 (1994)

    Article  CAS  Google Scholar 

  2. Fairman W.A., Vandenberg R.J., Arriza J.L., Kavanaugh, M.P. & Amara S.G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995)

    Article  CAS  Google Scholar 

  3. Arriza, J.L., Eliasof, S., Kavanaugh, M.P. & Amara, S.G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl Acad. Sci. USA 94, 4155–4160 (1997)

    Article  CAS  Google Scholar 

  4. Kanai, Y. Family of neutral and acidic amino acid transporters: molecular biology, physiology and medical implications. Curr. Opin. Cell Biol. 9, 565–572 (1997)

    Article  CAS  Google Scholar 

  5. Sonders, M.S. & Amara, S.G. Channels in transporters. Curr. Opin. Neurobiol. 6, 294–302 (1996)

    Article  CAS  Google Scholar 

  6. Kanai, Y. et al. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter J. Biol. Chem. 270, 16561– 16568 (1995)

    Article  CAS  Google Scholar 

  7. Zerangue, N. & Kavanaugh, M.P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634– 637 (1996)

    Article  CAS  Google Scholar 

  8. Barbour B., Brew, H. & Attwell, D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335, 433– 435 (1988)

    Article  CAS  Google Scholar 

  9. Takahashi, M. et al. The role of glutamate transporters in glutamate homeostasis in the brain. J. Exp. Biol. 200, 401–409 (1997)

    CAS  PubMed  Google Scholar 

  10. Lester, H.A., Cao, Y. & Mager, S. Listening to neurotransmitter transporters. Neuron 17, 807–810 (1996)

    Article  CAS  Google Scholar 

  11. Wadiche, J.I., Amara, S.G. & Kavanaugh, M.P. Ion fluxes associated with excitatory amino acid transport . Neuron 15, 721–728 (1995)

    Article  CAS  Google Scholar 

  12. Yamada, K. et al. EAAT4 is a postsynaptic glutamate transporter at purkinje cell synapses. Neuroreport 7, 2013–2017 (1996)

    Article  CAS  Google Scholar 

  13. Tanaka, J., Ichikawa, R., Watanabe, M., Tanaka, K. & Inoue, Y. Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses. Neuroreport 8, 2461–2464 (1997)

    Article  CAS  Google Scholar 

  14. Otis, T.S., Kavanaugh, M.P. & Jahr, C.E. Postsynaptic glutamate transport at the climbing fiber–purkinje cell synapse. Science 277, 1515– 1518 (1997)

    Article  CAS  Google Scholar 

  15. Barbour, B., Keller, B.U., Llano, I. & Marty, A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12, 1331– 43 (1994)

    Article  CAS  Google Scholar 

  16. Takahashi, M., Kovalchuk, Y. & Attwell, D. Pre- and postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to purkinje cell synapses. J. Neurosci. 15, 5693–5702 ( 1995)

    Article  CAS  Google Scholar 

  17. Piomelli, D. Arachidonic acid in cell signaling. Curr. Opin. Cell Biol. 5, 274–280, (1993)

    Article  CAS  Google Scholar 

  18. Piomelli, D. & Greengard, P. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci. 11, 367–373 ( 1990)

    Article  CAS  Google Scholar 

  19. Ordway, R.W., Singer, J.J. & Walsh, J.V. Jr. Direct regulation of ion channels by fatty acids. Trends Neurosci. 14, 96–100 (1991)

    Article  CAS  Google Scholar 

  20. Volterra, A. et al. A role for the arachidonic acid cascade in fast synaptic modulation: ion channels and transmitter uptake systems as target proteins. Adv. Exp. Med. Biol. 318, 147–158 ( 1992)

    Article  CAS  Google Scholar 

  21. Attwell, D., Miller, B. & Sarantis, M. Arachidonic acid as a messenger in the central nervous system. The Neurosciences 5, 159–169 (1993)

    CAS  Google Scholar 

  22. Gegelashvili, G. & Schousboe, A. High affinity glutamate transporters: regulation of expression and activity. Mol. Pharmacol. 52, 6–15 (1997)

    Article  CAS  Google Scholar 

  23. Dumuis, A., Pin, J.P., Oomagari, K., Sebben, M. & Bockaert, J. Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 182–184 ( 1990)

    Article  CAS  Google Scholar 

  24. Barbour, B., Szatkowski, M., Ingledew, N. & Attwell, D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342, 918–920 ( 1989)

    Article  CAS  Google Scholar 

  25. Volterra, A. et al. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J. Neurochem. 59, 600–606 ( 1992)

    Article  CAS  Google Scholar 

  26. Chan, P.H., Kerlan, R. & Fishman, R.A. Reductions of γ-aminobutyric acid and glutamate uptake and (Na++K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40, 309 –316 (1993)

    Article  Google Scholar 

  27. Volterra, A., Trotti, D. & Racagni, G. Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992 (1994)

    CAS  PubMed  Google Scholar 

  28. Kataoka, Y., Morii, H., Watanabe, Y. & Ohmori, H. A postsynaptic excitatory amino acid transporter with chloride conductance functionally regulated by neuronal activity in cerebellar purkinje cells. J. Neurosci. 17, 7017–7024 ( 1997)

    Article  CAS  Google Scholar 

  29. Zerangue, N., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270, 6433–6435 (1995)

    Article  CAS  Google Scholar 

  30. Trotti, D. et al. Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J. Biol. Chem. 270, 9890–9895 (1995)

    Article  CAS  Google Scholar 

  31. Quick, M.W. & Lester, H.A. Methods Neurosci. 14 , 261–279 (1994)

    Article  Google Scholar 

  32. Fersht, A. Enzyme Structure and Mechanism (W. H. Freeman, Reading and San Francisco, 1977)

    Google Scholar 

  33. Dascal, N. The use of Xenopus oocytes for the study of ion channels. Crit. Rev. Biochem. 22, 317–387 ( 1987)

    Article  CAS  Google Scholar 

  34. Costa, P.F., Emilio, M.G., Fernandes, P.L., Ferreira, H.G. & Ferreira, K.G. Determination of ionic permeability coefficients of the plasma membrane of Xenopus laevis oocytes under voltage clamp. J. Physiol. 483, 199–211 (1989)

    Article  Google Scholar 

  35. DeCoursey, T.E. & Cherny, V.V. Voltage-activated hydrogen ion currents. J. Membrane Biol. 141, 203– 223 (1994)

    Article  CAS  Google Scholar 

  36. Deamer, D.W. Proton permeation of lipid bilayers. J. Bioenergetics Biomembranes 19 , 457–479 (1987)

    CAS  Google Scholar 

  37. DeCoursey, T.E. & Cherny, V.V. Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. J. Gen. Physiol. 109, 415–434 ( 1997)

    Article  CAS  Google Scholar 

  38. Sesaki, S., Ishibashi, K., Nagai, T. & Marumo, F. Regulation mechanisms of intracellular pH of Xenopus laevis oocyte. Biochem. Biophys. Acta 1137, 45–51 ( 1992)

    Article  Google Scholar 

  39. Pellerin, L. & Magistretti, P.J. Glutamate uptake stimulates Na+, K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J. Neurochem. 69, 2132–2137 ( 1997)

    Article  CAS  Google Scholar 

  40. Billups, B & Attwell, D. Modulation of non-vesicular glutamate release by pH. Nature 379, 171– 174 (1996)

    Article  CAS  Google Scholar 

  41. Tolner, B., Ubbink-Kok, T., Poolman, B. & Konings, W.N. Cation-selectivity of the L-glutamate transporters of Escherichia coli, Bacillus stearothermophilus and Bacillus caldotenax: dependence on the environment in which the proteins are expressed. Mol. Microbiol. 18, 123– 133 (1995)

    Article  CAS  Google Scholar 

  42. Petrou, S., Ordway, R.W., Singer, J.J. & Walsh J.V.Jr. A putative fatty acid-binding domain of the NMDA receptor. Trends Biochem. Sci. 18, 41–42 ( 1993)

    Article  CAS  Google Scholar 

  43. Klausner, R.D., Kleinfeld, A.M., Hoover, R.L. & Karnovsky, M.J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255, 1286–1295 (1980)

    CAS  PubMed  Google Scholar 

  44. Casado, M. et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268, 27313– 27317 (1993)

    CAS  PubMed  Google Scholar 

  45. Conradt, M. & Stoffel W. Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J. Neurochem. 68, 1244–1251 ( 1997)

    Article  CAS  Google Scholar 

  46. Shearman, M.S., Naor, Z., Sekiguchi, K., Kishimoto, A. & Nishizuka, Y. Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites . FEBS Lett. 243, 177–182 (1989)

    Article  CAS  Google Scholar 

  47. Pottosin, I.I., Andjus, P.R., Vucelic, D. & Berestovsky, G.N. Effects of D2O on permeation and gating in the Ca2+-activated potassium channel from Chara. J. Membr. Biol. 136, 113–124 (1993)

    Article  CAS  Google Scholar 

  48. Deamer, D.W. & Nichols, J.W. Proton flux mechanisms in model and biological membranes. J. Membr. Biol. 107, 91–103 (1989)

    Article  CAS  Google Scholar 

  49. Linden, D.J. Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar purkinje neuron in culture. Neuron 15, 1393–1401 (1995)

    Article  CAS  Google Scholar 

  50. Takahashi, K.I. & Copenhagen, D.R. Modulation of neuronal function by intracellular pH. Neurosci. Res. 24, 109–116 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute and NIH grant NS33273 to S.G.A. We thank Mary Oltman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan G. Amara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairman, W., Sonders, M., Murdoch, G. et al. Arachidonic acid elicits a substrate-gated proton current associated with the glutamate transporter EAAT4. Nat Neurosci 1, 105–113 (1998). https://doi.org/10.1038/355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing