Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evacuation of gas from globular clusters by winds from millisecond pulsars

Abstract

WHY is so little gas observed within globular clusters? A typical globular cluster contains 103 post-turn off stars, each of which will lose 0.2M before its asymptotic giant branch phase of evolution, and 0.1M during this phase1, and so should accumu-late 102103M of gas in the 108-year interval between passages of the globular cluster through the galactic disk. (At each disk passage, gas ram pressure will remove the accumulated material2,3.) But observational searches show that there is scant intracluster gas; in many clusters, there is less than 1M of gas, orders of magnitude less than theoretical predictions3. The recent discovery4,5 of multiple millisecond pulsars in globular clusters may resolve this long-standing problem: the relativistic wind from these pulsars is enough to drive gas from stellar mass loss out of the globular cluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iben, I. Jr & Renzini, A. Ann. Rev. Astr. Astrophys. 21, 271–342 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Roberts, M. S. in IAU Symp. 126: Harlow Shapley Symposium on Globular Cluster Systems in Galaxies (eds Grindlay, J. F. & Philip, A. G. D.) 411–423 (Kluwer, Dordrecht, 1986).

    Google Scholar 

  3. Taylor, R. J. & Wood, P. R. Mon. Not. R. astr. Soc. 171, 467–474 (1975).

    Article  ADS  Google Scholar 

  4. Fruchter, A. S. & Goss, W. M. Astrophys. J. 365, L63–L66 (1990).

    Article  ADS  Google Scholar 

  5. Manchester, R. N. et al. IAU Circ. No. 4905 (1990).

  6. Roberts, M. S. Astr. J. 65, 457–466 (1960).

    Article  ADS  Google Scholar 

  7. Kerr, F. & Knapp, G. R. Astr. J. 77, 573–576 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Knapp, G. R., Rose, K. W. & Kerr, F. J. Astrophys. J. 186, 831–839 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Bowers, P. F., Kerr, F. J., Knapp, G. R., Galiagher, J. S. & Hunt, D. A. Astrophys. J. 233, 553–557 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Lynch, D. K., Bowers, P. F. & Whiteoak, J. B. Astr. J. 97, 1708–1709 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Hills, J. G. & Klein, M. J. Astrophys. Lett. 13, 65–68 (1973).

    ADS  Google Scholar 

  12. Johnson, H. M., Catura, R. C., Charles, P. A. & Sanford, P. W. Astrophys. J. 212, 112–116 (1977).

    Article  ADS  Google Scholar 

  13. Grindlay, J. E. & Liller, W. Astrophys. J. 216, L105–L109 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Troland, T. H., Hesser, J. E. & Heiles, C. E. Astrophys. 219, 873–876 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Schneps, M. H., Ho, P. T. P., Barrett, A. H., Buxton, R. B. & Myers, P. C. Astrophys. J. 225, 808–814 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Lynch, D. K. & Rossano, G. S. Astr. J. 100, 719–736 (1990).

    Article  ADS  Google Scholar 

  17. Van den Bergh, D. A. & Faulkner, J. A. Astrophys. J. 218, 415–430 (1977).

    Article  ADS  Google Scholar 

  18. Scott, E. H. & Durisen, R. H. Astrophys. J. 222, 612–620 (1978).

    Article  ADS  Google Scholar 

  19. Frank, J. and Gisler, G. Mon. Not. R. astr. Soc. 176, 533–538 (1976).

    Article  ADS  Google Scholar 

  20. Lea, S. M. & De Young, D. S. Astrophys. J. 210, 647–665 (1976).

    Article  ADS  Google Scholar 

  21. Hartwick, F. D. A., Cowley, A. P. & Grindlay, J. E. Astrophys. J. 254, L11–L13 (1982).

    Article  ADS  Google Scholar 

  22. Kulkarni, S. R., Narayan, R. & Romani, R. W. Astrophys. J. 356, 174–183 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Bietenholz, M. F., Kronberg, P. P., Hogg, D. E. & Wilson, A. S. Astrophys. J. 373, L59–L62 (1991).

    Article  ADS  Google Scholar 

  24. Ruderman, M. & Cheng, K. S. Astrophys. J. 335, 306–318 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Kulkarni, S. R. & Hester, J. J. Nature 335, 801–803 (1988).

    Article  ADS  Google Scholar 

  26. Gathier, R., Pottasch, S. R. & Goss, W. M. Astr. Astrophys. 127, 320–321 (1983).

    ADS  CAS  Google Scholar 

  27. Wolszczan, A. et al. Nature 337, 531–533 (1989).

    Article  ADS  Google Scholar 

  28. Anderson, S. B., Kulkarni, S. R., Prince, T. A. & Wolszczan, A. Bull. Am. astr. Soc. 22, 1285 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spergel, D. Evacuation of gas from globular clusters by winds from millisecond pulsars. Nature 352, 221–222 (1991). https://doi.org/10.1038/352221a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352221a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing