Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-step process for photoreceptor formation in Drosophila

Abstract

The formation of photoreceptor cells (PRCs) in Drosophila serves as a paradigm for understanding neuronal determination and differentiation. During larval stages, a precise series of sequential inductive processes leads to the recruitment of eight distinct PRCs (R1–R8)1. But, final photoreceptor differentiation, including rhabdomere morphogenesis and opsin expression, is completed four days later, during pupal development2,3. It is thought that photoreceptor cell fate is irreversibly established during larval development, when each photoreceptor expresses a particular set of transcriptional regulators and sends its projection to different layers of the optic lobes. Here, we show that the spalt (sal) gene complex4,5,6,7 encodes two transcription factors that are required late in pupation for photoreceptor differentiation. In the absence of the sal complex, rhabdomere morphology and expression of opsin genes in the inner PRCs R7 and R8 are changed to become identical to those of outer R1–R6 PRCs. However, these cells maintain their normal projections to the medulla part of the optic lobe, and not to the lamina where outer PRCs project. These data indicate that photoreceptor differentiation occurs as a two-step process. First, during larval development, the photoreceptor neurons become committed and send their axonal projections to their targets in the brain. Second, terminal differentiation is executed during pupal development and the photoreceptors adopt their final cellular properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Salm during eye pupal maturation.
Figure 2: salm/salr mutant clones reveal transformation of inner photoreceptor cells (PRCs) into outer PRCs.
Figure 3: Expression of rhodopsins is altered in salm/salr (Df(2L)5) mutant eyes.
Figure 4: R7 and R8 projections and pros expression remain unaltered in salm/salr mutant eyes.

Similar content being viewed by others

References

  1. Dominguez, M., Wasserman, J. D. & Freeman, M. Multiple functions of the EGF receptor in Drosophila eye development. Curr. Biol. 8, 1039–1048 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Perry, M. M. Further studies on the development of the eye of Drosophila melanogaster. I. The ommatidia. J. Morphol. 124, 227–248 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Cagan, R. L. & Ready, D. F. The emergence of order in the Drosophila pupal retina. Dev. Biol. 136, 346–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kuhnlein, R. P. et al. Spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J. 13, 168–179 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Celis, J. F., Barrio, R. & Kafatos, F. C. A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature 381, 421–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Rusten, T. E. et al. Spalt modifies EGFR-mediated induction of chordotonal precursors in the embryonic PNS or Drosophila promoting the development of oenocytes. Development 128, 711–722 (2001).

    CAS  PubMed  Google Scholar 

  7. Elstob, P. R., Brodu, V. & Gould, A. P. Spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. Development 128, 723–732 (2001).

    CAS  PubMed  Google Scholar 

  8. Barrio, R., de Celis, J. F., Bolshakov, S. & Kafatos, F. C. Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages. Dev. Biol. 215, 33–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Mollereau, B. et al. A green fluorescent protein enhancer trap screen in Drosophila photoreceptor cells. Mech. Dev. 93, 151–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, J. P. & Ready, D. F. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121, 4359–4370 (1995).

    CAS  PubMed  Google Scholar 

  11. Sheng, G., Thouvenot, E., Schmucker, D., Wilson, D. S. & Desplan, C. Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 11, 1122–1131 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Cadavid, A. L., Ginzel, A. & Fischer, J. A. The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127, 1727–1736 (2000).

    CAS  PubMed  Google Scholar 

  13. Hardie, R. C. in Sensory Physiology 5 (ed. Ottoson, D.) 1–79 (Springer, Heidelberg, 1985).

    Book  Google Scholar 

  14. Papatsenko, D., Sheng, G. & Desplan, C. A new rhodopsin in R8 photoreceptors of Drosophila; evidence for coordinate expression with Rh3 in R7 cells. Development 124, 1665–1673 (1997).

    CAS  PubMed  Google Scholar 

  15. Chou, W. H. et al. Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence. Development 126, 607–616 (1999).

    CAS  PubMed  Google Scholar 

  16. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kauffmann, R. C., Li, S., Gallagher, P. A., Zhang, J. & Carthew, R. W. Ras1 signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev. 10, 2167–2178 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kimmel, B. E., Heberlein, U. & Rubin, G. M. The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev. 4, 712–727 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Begemann, G., Michon, A. M., van der Voorn, L., Wepf, R. & Mlodzik, M. The Drosophila orphan nuclear receptor seven-up requires the Ras pathway for its function in photoreceptor determination. Development 121, 225–235 (1995).

    CAS  PubMed  Google Scholar 

  20. Venkatesh, T. R., Zipursky, S. L. & Benzer, S. Molecular analysis of the development of the compound eye in Drosophila. Trends Neurosci. 8, 251–257 (1985).

    Article  Google Scholar 

  21. Freeman, M. Cell determination strategies in the Drosophila eye. Development 124, 261–270 (1997).

    CAS  PubMed  Google Scholar 

  22. Colley, N. J., Cassill, J. A., Baker, E. K. & Zuker, C. S. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc. Natl Acad. Sci. USA 97, 3070–3074 (1995).

    Article  Google Scholar 

  23. Kumar, J. P., Bowman, J., O'Tousa, J. E. & Rady, D. F. Rhodopsin replacement rescues photoreceptor structure during a critical developmental window. Dev. Biol. 188, 43–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Chang, H. Y. & Ready, D. F. Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290, 1978–1980 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Fortini, M. E. & Rubin, G. M. The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster. Cell Tissue Res. 265, 185–191 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Tomlison, A. & Ready, D. F. Cell fate in the Drosophila ommatidium. Dev. Biol. 123, 264–275 (1987).

    Article  Google Scholar 

  28. Porter, J. A. & Montell, C. Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J. Cell. Biol. 122, 601–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Chou, W. H. et al. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 17, 1101–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Colley, N. J., Baker, E. K., Stamnes, M. A. & Zuker, C. S. The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67, 255–263 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to R. Barrio for her contribution to this work. We thank S. Britt, R. Khünlein, C. Doe, C. Zuker, P. Beaufils and K. Basler for fly stocks and antibodies, the Desplan and Treisman laboratories for support and discussion, and I. Tan for help with ultrathin section analysis. We are also grateful to U. Gaul and M. Mlodzik for allowing us to report unpublished results, J. Treisman for support, and T. Cook and F. Pichaud for comments on the manuscript. We would like to thank Developmental Study Hybridoma Bank for antibodies. B.M. was supported by the Human Frontier Science Program Organization (HFSPO). This work was supported by grants from the National Eye Institute (NEI) to C.D., from HHMI, Research to Prevent Blindness (RPB) and the Retina Research Foundation to N.J.C., and the Dirección General de Investigación from Minesterior de Ciencia y Tecnología (MCYT) to M.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose F. de Celis or Claude Desplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollereau, B., Dominguez, M., Webel, R. et al. Two-step process for photoreceptor formation in Drosophila. Nature 412, 911–913 (2001). https://doi.org/10.1038/35091076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35091076

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing