Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic homogeneity of iron in the early solar nebula

Abstract

The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies1,2,3,4 observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted1,2,3, or as an isotopic ‘memory’ of Galactic evolution5. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A three-isotope plot for iron, showing that all the Fe-isotope data from both terrestrial and extraterrestrial materials plot on a single mass-fractionation line.

Similar content being viewed by others

References

  1. Clayton, R. N., Grossman, L. & Mayeda, T. K. A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Clayton, R. N., Hinton, R. W. & Davis, A. M. Isotopic variations in the rock-forming elements in meteorites. Phil. Trans. R. Soc. Lond. A 325, 483–501 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Young, E. D. & Russell, S. S. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Clayton, D. D. Isotope anomalies: Chemical memory of galactic evolution. Astrophys. J. 334, 191–195 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Thiemens, M. H. & Heidenreich, J. E. The mass independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Thiemens, M. H. Atmosphere science—Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Cliff, S. S. & Thiemens, M. H. The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: A mass-independent anomaly. Science 278, 1774–1776 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rockmann, T. et al. Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281, 544–546 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Bao, H. et al. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176–178 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Bao, H., Campbell, D. A., Bockheim, J. G. & Thiemens, M. H. Origin of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions. Nature 407, 499–502 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Arnett, D. Supernovae and Nucleosynthesis (Princeton Univ. Press, Princeton, 1996).

    Book  Google Scholar 

  13. Halliday, A. N. et al. Applications of multiple collector ICPMS to cosmochemistry, geochemistry and paleoceanography. Geochim. Cosmochim. Acta 62, 919–940 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Zhu, X. K., O'Nions, R. K., Guo, Y., Belshaw, N. S. & Rickard, D. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem. Geol. 163, 139–149 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Zhu, X. K., O'Nions, R. K., Guo, Y. & Reynolds, B. C. Secular variation of iron isotopes in North Atlantic deep water. Science 287, 2000–2002 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Belshaw, N. S., Zhu, X. K., Guo, Y. & O'Nions, R. K. High precision measurement of iron isotopes by plasma source mass spectrometry. Int. J. Mass. Spectrom. 197, 191–195 (2000).

    Article  CAS  Google Scholar 

  17. Marechal, C. N., Telouk, P. & Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251–273 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Clayton, R. N. & Mayeda, T. K. Formation of ureilites by nebular processes. Geochim. Cosmochim. Acta 52, 1313–1318 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Volkening, J. & Papanastassiou, D. A. Iron isotope anomaly. Astrophys. J. 347, L43–L46 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Volkening, J. & Papanastassiou, D. A. Zinc isotope anomaly. Astrophys. J. 358, L29–L32 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Birck, J. L. & Lugmair, G. W. Nickel and chromium isotopes in Allende inclusions. Earth Planet. Sci. Lett. 90, 131–143 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Rotaru, M., Birck, J. L. & Allègre, C. J. Clue to early solar system history from chromium isotopes in carbonaceous chondrites. Nature 358, 465–470 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Podosek, F. A. et al. Thoroughly anomalous chromium in Orgueil. Meteorit. Planet. Sci. 32, 617–627 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Niemeyer, S. & Lugmair, G. W. Titanium isotopic anomalies in meteorites. Geochim. Cosmochim. Acta 48, 1401–1416 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Niemeyer, S. & Lugmair, G. W. Ubiquitous isotopic anomalies in Ti from normal Allende inclusions. Earth Planet. Sci. Lett. 53, 211–225 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Papanastassiou, D. A. Chromium isotopic anomalies in the Allende meteorite. Astrophys. J. 308, L27–L30 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. S. Belshaw for assistance with mass spectrometry; A. Galy for discussions and for providing solution aliquots of some samples analysed; G. Turner and F. Albarède for comments on the manuscript; and M. Price for providing samples of the Mt and OUM series. This work was supported by the Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. K. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Guo, Y., O'Nions, R. et al. Isotopic homogeneity of iron in the early solar nebula. Nature 412, 311–313 (2001). https://doi.org/10.1038/35085525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085525

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing