Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups

Abstract

SHORTENED forms of the group I intron from Tetrahymena catalyse sequence-specific cleavage of exogenous oligonucleotide substrates1,2. The association between RNA enzyme (ribozyme) and substrate is mediated by pairing between an internal guide sequence on the ribozyme and a complementary sequence on the substrate1,3,4. RNA substrates and cleavage products associate with a binding energy greater than that of base-pairing by 4 kcal mol−1 (at 42°C), whereas DNA associates with an energy around that expected for base-pairing5–9. It has been proposed that the difference in binding affinity is due to specific 2′-OH groups on an RNA substrate forming stabilizing tertiary interactions with the core of the ribozyme, or that the RNA-RNA helix formed upon association of an RNA substrate and the ribozyme might be more stable than an RNA-DNA helix of the same sequence6. To differentiate between these two models, chimaeric oligonucleotides containing deoxynucleotide residues at successive positions along the chain were synthesized, and their equilibrium binding constants for association with the ribozyme were measured directly by a new gel electrophoresis technique5. We report here that most of the extra binding energy can be accounted for by discrete RNA–ribozyme interactions, the 2′-OH group on the sugar residue three nucleotides from the cleavage site contributing the most interaction energy. Thus, in addition to the well documented binding of RNA to RNA by base-pairing10–14, 2′-OH groups within a duplex can also mediate association between RNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zaug, A. J., Been, M. D. & Cech, T. R. Nature 324, 429–433 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Zaug, A. J., Grosshans, C. A. & Cech, T. R. Biochemistry 27, 8924–8930 (1988).

    Article  CAS  Google Scholar 

  3. Davies, R. W., Waring, R. B., Ray, J. A., Brawn, T. A. & Scazzocchio, C. Nature 300, 719–724 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Been, M. D. & Cech, T. R. Cell 47, 207–216 (1986).

    Article  CAS  Google Scholar 

  5. Pyle, A. M., McSwiggen, J. A. & Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 87, 8187–8191 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Herschlag, D. & Cech, T. R. Nature 344, 405–409 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Herschlag, D. & Cech, T. R. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  Google Scholar 

  8. Sugimoto, N., Kierzek, R. & Turner, D. H. Biochemistry 27, 6384–6392 (1988).

    Article  CAS  Google Scholar 

  9. Sugimoto, N., Tomka, M., Kierzek, R., Bevilacqua, P. & Turner, D. H. Nucleic Acids Res. 17, 355–371 (1989).

    Article  CAS  Google Scholar 

  10. Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  11. Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Tomizawa, J. Cell 38, 861–870 (1984).

    Article  CAS  Google Scholar 

  13. Lerner, M. R., Boyle, J. A., Mount, S. A., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Guthrie, C. & Patterson, B. A. Rev. Genet. 22, 387–419 (1988).

    Article  CAS  Google Scholar 

  15. Martin, F. H. & Tinoco, I. Jr. Nucleic Acids Res. 8, 2295–2300 (1980).

    Article  CAS  Google Scholar 

  16. Nelson, J. W. & Tinoco, I. Jr. Biochemistry 21, 5289–5295 (1982).

    Article  CAS  Google Scholar 

  17. Been, M. D. & Cech, T. R. Cell 50, 951–961 (1987).

    Article  CAS  Google Scholar 

  18. Wells, N. C. & Fersht, A. R. Nature 316, 656–657 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Turner, D. H., Sugimoto, N., Kierzek, R. & Dreiker, S. D. J. Am. chem. Soc. 109, 3783–3785 (1987).

    Article  CAS  Google Scholar 

  20. Quigley, G. J. & Rich, A. Science 194, 796–806 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Dix, D. B., Wittenberg, W. L., Uhlenbeck, O. C. & Thompson, R. C. J. biol. Chem. 261, 10112–10118 (1986).

    CAS  PubMed  Google Scholar 

  22. Dock-Bregeon, A. C. et al. J. molec. Biol. 209, 459–474 (1989).

    Article  CAS  Google Scholar 

  23. Bass, B. L. & Cech, T. R. Biochemistry 25, 4473–4477 (1986).

    Article  CAS  Google Scholar 

  24. Perreault, J.-P., Wu, T., Cousineau, B., Ogilvie, K. K. & Cedergren, R. Nature 344, 565–567 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Yang, J., Perreault, J.-P., Labuda, D., Usman, N. & Cedergren, R. Biochemistry 29, 11156–11160 (1990).

    Article  CAS  Google Scholar 

  26. Dahm, S. C. & Uhlenbeck, O. C. Biochimie 72, 819–823 (1990).

    Article  CAS  Google Scholar 

  27. Michel, F. & Westhof, E. J. molec. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  28. Wu, T., Ogilvie, K. K. & Pon, R. T. Nucleic Acids Res. 9, 3501–3517 (1989).

    Article  Google Scholar 

  29. Scaringe, S. A., Francklyn, C. & Ussman, N. Nucleic Acids Res. 18, 5433–5441 (1990).

    Article  CAS  Google Scholar 

  30. Michel, F., Jacquier, A. & Dujon, B. Biochimie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  31. Waring, R. J., Towner, P., Minter, S. J. & Davies, R. W. Nature 321, 133–139 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyle, A., Cech, T. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups. Nature 350, 628–631 (1991). https://doi.org/10.1038/350628a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350628a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing