Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular dynamics of pain control

Key Points

  • Different chronic pain states generate different neurochemical changes in sensory fibres and the spinal cord. Understanding these distinct molecular signatures might be the key to effective pain control.

  • Sensory fibres carry information from the skin and most internal tissues to the spinal cord. Anatomically, there are two broad groups of sensory fibre: myelinated A fibres and smaller diameter, unmyelinated C fibres. Most C fibres are polymodal nociceptors that respond to all forms of noxious stimulation.

  • C fibres can be divided into two groups. One group expresses receptors for GDNF, and terminates almost exclusively within the deeper parts of the substantia gelatinosa of the spinal cord. The other group synthesizes peptides such as substance P, expresses the NGF receptor TrkA and terminates more superficially within the dorsal horn.

  • Noxious stimulation changes the phenotype of sensory neurons. In part, these changes are caused by a change in the levels of growth factors released from the injury area. NGF has been shown to regulate the behavioural sensitivity to pain. GDNF-sensitive sensory fibres might be involved in establishing chronic pain states.

  • Pain has sensory and affective qualities. The spinothalamic pathway, which originates primarily from neurons in the neck of the dorsal horn and terminates within the thalamus, is thought to convey the sensory qualities of the stimulus.

  • The spinoparabrachial pathway, which derives largely from lamina I neurons of the dorsal horn that express the substance P/neurokinin-1 (NK1) receptor, terminates within the parabrachial nuclei and periaqueductal grey. In turn, these areas project on areas such as the hypothalamus and amygdala that modulate the affective dimensions of pain and control autonomic activity.

  • Selective ablation of lamina I neurons that express the NK1 receptor revealed that this population is pivotal in the signalling of pain and the central maintenance of hyperalgesia.

  • Selective knockout of the NK1 receptor blunts the rewarding effect of morphine while leaving its analgesic effect largely intact. So NK1-receptor antagonists could counteract problems of morphine dependency in the clinic.

Abstract

Pain is necessary for survival, but persistent pain can result in anxiety, depression and a reduction in the quality of life. The discriminative and affective qualities of pain are both thought to be regulated in an activity-dependent fashion. Recent studies have identified cells and molecules that regulate pain sensitivity and the parallel pathways that distribute nociceptive information to limbic or sensory areas of the forebrain. Here, we emphasize the cellular and neurobiological consequences of pain, especially those that are involved in the generation and maintenance of chronic pain. These new insights into pain processing will significantly alter our approach to pain control and the development of new analgesics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C fibres and the dorsal horn of the spinal cord.
Figure 2: The main ascending and descending spinal pathways.
Figure 3: Lamina I neurons.
Figure 4: Internalization of the NK1 receptor in a neuron within the spinal cord.
Figure 5: Selective knockout of the NK1 receptor in mice.

Similar content being viewed by others

References

  1. Hunt, S. P. & Rossi, J. Peptide- and non-peptide-containing unmyelinated primary afferents: the parallel processing of nociceptive information . Phil. Trans. R. Soc. Lond. B 308, 283– 289 (1985). PubMed

    Article  CAS  Google Scholar 

  2. Willis, W. D. & Westlund, K. N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31 (1997 ).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernard, J. F. & Bandler, R. Parallel circuits for emotional coping behaviour: new pieces in the puzzle. J. Comp. Neurol. 401, 429–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Craig, A. D. in The Emotional Motor System. Progress in Brain Research Vol. 107 (eds Holstege, G., Saper, C. & Bandler, R.) 225– 242 (Elsevier, New York, 1996).

    Book  Google Scholar 

  5. Villanueva, L., Bouhassira, D. & Le Bars, D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 67, 231–240 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  6. Lima, D., Mendes-Ribeiro, J. A. & Coimbra, A. The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience 45, 137– 152 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Urban, M. O. & Gebhart, G. F. Supraspinal contributions to hyperalgesia. Proc. Natl Acad. Sci. USA 96, 7687–7692 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubner, R. & Ren, K. Endogenous mechanisms of sensory modulation . Pain 6, S45–S53 (1999 ). PubMed

  9. Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  10. Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98, 585– 598 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hokfelt, T., Zhang, X. & Wiesenfeld-Hallin, Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 17, 22–30 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Chizh, B. A., Dickenson, A. H. & Wnendt, S. The race to control pain: more participants, more targets . Trends Pharmacol. Sci. 20, 354– 357 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hunt, S. P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation . Nature 328, 632–634 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, S., Evan, G. I. & Hunt, S. P. Changing patterns of c-fos induction in spinal neurons following thermal cutaneous stimulation in the rat. Neuroscience 36, 73–81 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  15. Fields, H. in Molecular Neurobiology of Pain (ed. Borsook, D.) 307– 317 (IASP, Seattle, 1997).

    Google Scholar 

  16. Yaksh, T. L. Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Pharmacol. Sci. 20, 329–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Michaelis, M., Habler, H. J. & Jaenig, W. Silent afferents: a separate class of primary afferents? Clin. Exp. Pharmacol. Physiol. 23, 99– 105 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, G. Y., Huang, L. Y. & Zhao, Z. Q. Activation of silent mechanoreceptive cat C and A sensory neurons and their substance P expression following peripheral inflammation . J. Physiol. 528, 339– 348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagy, J. I. & Hunt, S. P. Fluoride-resistant acid phosphatase-containing neurons in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 7, 89– 97 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Ribeiro-Da-Silva, A., Castro-Lopes, J. M. & Coimbra, A. Distribution of glomeruli with fluoride-resistant acid phosphatase (FRAP)-containing terminals in the substantia gelatinosa of the rat. Brain Res. 377, 323– 329 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, A., Vulchanova, L., Wang, J., Li, X. & Elde, R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur. J. Neurosci. 11, 946–958 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Silverman, J. D. & Kruger, L. Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated 'nociceptor' thin axons in rat testis and cornea whole-mount preparations . Somatosens. Res. 5, 259– 267 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Bennett, D. L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribeiro-da-Silva, A. & Coimbra, A. Capsaicin causes selective damage to type I synaptic glomeruli in rat substantia gelatinosa . Brain Res. 290, 380–383 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Averill, S., McMahon, S. B., Clary, D. O., Reichardt, L. F. & Priestley, J. V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484– 1494 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cuello, A. C., Ribeiro-da-Silva, A., Ma, W., De Koninck, Y. & Henry, J. L. Organization of substance P primary sensory neurons: ultrastructural and physiological correlates. Regul. Pept. 46, 155–164 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Michael, G. J. & Priestley, J. V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy . J. Neurosci. 19, 1844– 1854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816– 824 (1997).References 29 and 51 imply that there might be pharmacological targets for treating pain that are preferentially expressed by peripheral sensory neurons.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett, D. L., Koltzenburg, M., Priestley, J. V., Shelton, D. L. & McMahon, S. B. Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. Eur. J. Neurosci. 10, 1282–1291 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Oddiah, D., Anand, P., McMahon, S. B. & Rattray, M. Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport 9, 1455–1458 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Koltzenburg, M., Bennett, D. L., Shelton, D. L. & McMahon, S. B. Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur. J. Neurosci. 11, 1698–1704 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Csillik, B. Nerve growth factor regulates central terminals of primary sensory neurons . Z. Mikrosk Anat. Forsch. 98, 11– 16 (1984).

    CAS  PubMed  Google Scholar 

  34. Fitzgerald, M., Wall, P. D., Goedert, M. & Emson, P. C. Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res. 332, 131 –141 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Woolf, C. J., Shortland, P. & Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75– 78 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Bennett, D. L., French, J., Priestley, J. V. & McMahon, S. B. NGF but not NT-3 or BDNF prevents the A fiber sprouting into lamina II of the spinal cord that occurs following axotomy. Mol. Cell. Neurosci. 8, 211–220 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  37. Boucher, T. J. et al. Potent analgesic effects of GDNF in neuropathic pain states . Science 290, 124–127 (2000). PubMed

    Article  CAS  PubMed  Google Scholar 

  38. Malmberg, A. B., Chen, C., Tonegawa, S. & Basbaum, A. I. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science 278, 279–283 ( 1997).References 37 and 38 identify novel targets for treating and understanding the mechanisms that give rise to neuropathic pain.

    Article  CAS  PubMed  Google Scholar 

  39. Bozic, C. R., Lu, B., Hopken, U. E., Gerard, C. & Gerard, N. P. Neurogenic amplification of immune complex inflammation . Science 273, 1722–1725 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. De Felipe, C. et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392, 394–397 (1998).The first demonstration of the wide-ranging roles of substance P in behaviour using gene knockout.

    Article  CAS  PubMed  Google Scholar 

  41. McMahon, S. B., Bennett, D. L., Priestley, J. V. & Shelton, D. L. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA–IgG fusion molecule. Nature Med. 1, 774–780 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  42. Neumann, S., Doubell, T. P., Leslie, T. & Woolf, C. J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384, 360 –364 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Swett, J. E. & Woolf, C. J. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J. Comp. Neurol. 231, 66–77 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Janig, W. & Koltzenburg, M. On the function of spinal primary afferent fibres supplying colon and urinary bladder. J. Auton. Nerv. Syst. 30, S89–S96 (1990).

    Article  PubMed  Google Scholar 

  45. Cervero, F. & Tattersall, J. E. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J. Physiol. (Lond.) 388, 383– 395 (1987).

    Article  CAS  Google Scholar 

  46. Morgan, C., Nadelhaft, I. & deGroat, W. C. The distribution within the spinal cord of visceral primary afferent axons carried by the lumbar colonic nerve of the cat. Brain Res. 398, 11–17 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  47. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531– 543 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183– 187 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306– 313 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Sangameswaran, L. et al. A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J. Biol. Chem. 272, 14805–14809 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  53. Novakovic, S. D. et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 18, 2174–2187 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cummins, T. R. et al. A novel persistent tetrodotoxin-resistant sodium current In SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19, RC43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Waxman, S. G., Dib-Hajj, S., Cummins, T. R. & Black, J. A. Sodium channels and pain. Proc. Natl Acad. Sci. USA 96, 7635–7639 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tate, S. et al. Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nature Neurosci. 1, 653–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Coward, K. et al. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85, 41– 50 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Okuse, K. et al. Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain. Mol. Cell. Neurosci. 10, 196–207 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  59. Akopian, A. N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neurosci. 2, 541–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Calza, L. et al. Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82, 575–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, X., Bean, A. J., Wiesenfeld-Hallin, Z., Xu, X. J. & Hokfelt, T. Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord. III. Effects of peripheral axotomy with special reference to galanin. Neuroscience 64, 893–915 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Schwei, M. J. et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897 (1999). This paper describes a mouse model of bone cancer pain and suggests a mechanism by which bone cancer pain is generated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Honore, P. et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Med. 6, 521– 528 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Meller, S. T., Dykstra, C., Grzybycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Peschanski, M., Mantyh, P. W. & Besson, J. M. Spinal afferents to the ventrobasal thalamic complex in the rat: an anatomical study using wheat-germ agglutinin conjugated to horseradish peroxidase. Brain Res. 278, 240–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Mantyh, P. W. The spinothalamic tract in the primate: a re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neuroscience 9, 847–862 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Dado, R. J., Katter, J. T. & Giesler, G. J. J. Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. II. Responses to innocuous and noxious mechanical and thermal stimuli. J. Neurophysiol. 71 , 981–1002 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Katter, J. T., Dado, R. J., Kostarczyk, E. & Giesler, G. J. J. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon. J. Neurophysiol. 75, 2581 –2605 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Marshall, G. E., Shehab, S. A., Spike, R. C. & Todd, A. J. Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neuroscience 72, 255–263 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Todd, A. J., McGill, M. M. & Shehab, S. A. Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem . Eur. J. Neurosci. 12, 689– 700 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Ding, Y. Q., Takada, M., Shigemoto, R. & Mizumo, N. Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res. 674 , 336–340 (1995). References 69 71 qualitatively identify the spinoparabrachial pathway as the main ascending pain pathway in rodents. It originates largely from lamina I/NK1-positive neurons.

    Article  CAS  PubMed  Google Scholar 

  72. Bernard, J. F., Bester, H. & Besson, J. M. Involvement of the spino-parabrachio-amygdaloid and hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog. Brain Res. 107, 243– 255 (1996).This paper demonstrates that parabrachial neurons are noci-specific and concerned predominantly with the intensity of pain rather than its location or nature.

    Article  CAS  PubMed  Google Scholar 

  73. Bester, H., Chapman, V., Besson, J. M. & Bernard, J. F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol. 83, 2239– 2259 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Doyle, C. A. & Hunt, S. P. Substance P receptor (neurokinin-1)-expressing neurons in lamina I of the spinal cord encode for the intensity of noxious stimulation: a c-Fos study in rat. Neuroscience 89, 17–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Mantyh, P. W. et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Nichols, M. L. et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science 286, 1558 –1561 (1999).References 75 and 76 describe the use of a suicide-ligand approach to selectively target and destroy cells involved in the ascending conduction of pain.

    Article  CAS  PubMed  Google Scholar 

  77. Bester, H., De Felipe C. D. & Hunt, S. P. The substance P receptor is essential for the full expression of noxious inhibitory controls in the mouse. J. Neurosci. (in the press).

  78. Hirakawa, N., Tershner S. A., Fields, H. L. & Manning, B. H. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 100, 861–871 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Culman, J. & Unger, T. Central tachykinins: mediators of defence reaction and stress reactions. Can. J. Physiol. Pharmacol. 73, 885–891 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  80. Rupniak, N. M. et al. Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice . Neuropharmacology 39, 1413– 1421 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Murtra, P., Sheasby, A. M., Hunt, S. P. & De Felipe, C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405, 180–183 (2000).The first demonstration that the rewarding and analgesic properties of opiates are separable following knockout of the NK1-receptor gene.

    Article  CAS  PubMed  Google Scholar 

  82. Laird, J. M. et al. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 98, 345–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kramer, M. S. et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640–1645 (1998). This paper presents both preclinical and clinical data indicating that NK1-receptor antagonists might be useful in the treatment of anxiety and depression.

    Article  CAS  PubMed  Google Scholar 

  84. Treede, R. D., Kenshalo, D. R., Gracely, R. H. & Jones, A. K. The cortical representation of pain. Pain 79, 105–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Price, D. D. Psychological and neural mechanisms of the affective dimension of pain. Science 288, 1769–1772 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  86. Rainville, P., Carrier, B., Hofbauer, R. K., Bushnell, M. C. & Duncan, G. H. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 82, 159–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997). References 86 and 87 identify the sensory and affective dimensions of pain as being separable and dependent, in part, on different brain circuits.

    Article  CAS  PubMed  Google Scholar 

  88. Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482 –484 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Larbig, W. et al. Evidence for a change in neural processing in phantom limb pain patients. Pain 67, 275– 283 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Knecht, S. et al. Reorganizational and perceptional changes after amputation . Brain 119, 1213–1219 (1996).

    Article  PubMed  Google Scholar 

  91. Lenz, F. A. et al. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nature Med. 1, 910–913 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  92. Matthes, H. W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Mitchell, J. M., Basbaum, A. I. & Fields, H. L. A locus and mechanism of action for associative morphine tolerance. Nature Neurosci. 3, 47– 53 (2000).This paper shows that the amygdala-dependent mechanism of contextual sensitization to opiates is reversible by local injection of CCK-B-receptor antagonists.

    Article  CAS  PubMed  Google Scholar 

  94. Robbins, T. W. & Everitt, B. J. Drug addiction: bad habits add up. Nature 398, 567– 570 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Franklin, K. B. Analgesia and abuse potential: an accidental association or a common substrate? Pharmacol. Biochem. Behav. 59, 993– 1002 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Lumb, B. M. & Lovick, T. A. The rostral hypothalamus: an area for the integration of autonomic and sensory responsiveness. J. Neurophysiol. 70, 1570–1577 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Lovick, T. A. Midbrain and medullary regulation of defensive cardiovascular functions. Prog. Brain Res. 107, 301–313 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52– 58 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Herve Bester for Figures 1 and 2 and for his comments on the manuscript. S.P.H would like to thank the Wellcome Trust and the BBSRC for support during the writing of this review. P.W.M would like to thank NINDS, NIDA and VA Merit Award for support for many of the studies referred to in the text.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

P2X3

GDNF

CGRP

NGF

TrkA

BNDF

NT-3

NK1 receptor

VR1

substance P

SNS

VRL-1

galanin

neuropeptide Y

Gap-43

GFAP

CCK-B receptor

Encyclopedia of Life Sciences links

Sodium channels

Somatosensory Systems

Substance P

Pain and analgesia

Glossary

BRAINSTEM

The brainstem extends from the spinal cord and rostrally includes the midbrain and thalamus. Surrounding the narrow ventricle of the midbrain is the periaqueductal grey, an area that is crucial for fight/flight behaviour and for the associated autonomic events.

SUBSTANTIA GELATINOSA

Lamina II of the spinal cord is also referred to (sometimes together with lamina I) as the substantia gelatinosa. This is the main site of termination of C-type sensory fibres, which are unmyelinated and so confer a gelatinous appearance on this region of the dorsal horn of the spinal cord when examined in unfixed preparations.

GLOMERULUS

Axon terminals end in a variety of configurations within the neuropil. The most common is en passant or de passage in which axons make simple synapses as they pass dendrites or cell bodies. By contrast, some axons end in — or produce strings of — enlargements that are often packed with synaptic vesicles. These glomerular-type endings synapse with large numbers of dendrites and other axons clustered around the glomerular ending.

SUBSTANCE P

Substance P is an 11-amino-acid tachykinin peptide neurotransmitter that binds preferentially to the NK1 receptor. A second tachykinin, NKA, also has high affinity for this receptor, suggesting that to refer to the NK1 receptor as 'the substance P receptor' could be misleading.

PERIPHERAL NERVE AXOTOMY

Surgical cutting or crushing of the peripheral nerve. The peripheral nerve can contain a mixture of sensory, autonomic or motor fibres depending on the particular nerve.

EXTRAVASATION

Refers to the leakage of plasma and plasma proteins from post-capillary venules — recognized as oedema.

HYPERALGESIA

Hyperalgesia refers to the perception of a stimulus as more painful than when previously experienced.

LAMINA I

The grey matter of the spinal cord has been divided up into ten laminae on the basis of the distribution of neuronal cell bodies and myelinated fibres. The most superficial is lamina I, which contains a mixture of neurons, 10% of which express the tachykinin NK1 receptor and project to higher centres of the brain.

CARRAGEENAN

Carrageenan is an inflammatory agent extracted from seaweed that induces localized swelling and pain that peaks three hours after injection. It is used to model inflammatory pain states observed in the clinic.

VON FREY THRESHOLDS

This is the point at which the stimulus — the Von Frey monofilament — produces a withdrawal response. The threshold is established by using filaments that exert a stimulus intensity that depends on their diameter.

DORSAL ROOT GANGLION

The cell bodies of sensory neurons are collected together in paired ganglia that lie alongside the spinal cord. These cell bodies are surrounded by satellite glial cells, which have much in common with the Schwann cells that ensheath peripheral axons. Very few synapses have been observed in these ganglia.

ALLODYNIA

Allodynia refers to the perception of a stimulus as painful when previously the stimulus was reported to be non-painful. As with hyperalgesia, this category was derived from observations on humans in which verbal reporting was used to assess pain sensitivity, and so it is very difficult to designate a change in pain sensitivity in animals as allodynic or hyperalgesic.

COMPLETE FREUNDS ADJUVANT

Complete Freunds Adjuvant is an inflammatory agent that induces localized swelling and pain that peaks three days after injection. It is used to model persistent pain states observed in the clinic.

CHUNG MODEL

There are several widely used neuropathic pain models. The Chung model is produced by a tight ligation of lumber dorsal roots L5 and L6 close to their exit from the dorsal root ganglion, leaving L4 intact. Stimuli applied within the peripheral cutaneous receptive field of L5 axons produce a heightened behavioural withdrawal response of the limb, suggesting increased sensitivity to previously non-noxious and noxious stimuli.

STRESS-INDUCED ANALGESIA

Stress has been shown to reduce sensitivity to noxious stimulation. In mice, moderate stress produces an analgesia that is mediated by endogenous opiates, whereas more severe stress results in a non-opioid-mediated, NK1-mediated and NMDA-receptor-mediated analgesia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, S., Mantyh, P. The molecular dynamics of pain control. Nat Rev Neurosci 2, 83–91 (2001). https://doi.org/10.1038/35053509

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing