Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of Golgi depletion on exocytic transport

Abstract

Here we evaluate the idea that the Golgi is in dynamic equilibrium with the endoplasmic reticulum (ER). In cytoplasts that lack the Golgi apparatus, no regrowth of the Golgi is observed, nor is any transport from the ER to the cell surface detected. However, introduction of the smallest measurable amount of Golgi (equivalent to a few per cent per cell) yields significant exocytic transport. Our results indicate that the steady-state levels of Golgi in the ER are far smaller than the 30% that has been postulated, and that the Golgi may be an independent organelle and not simply an extension of the ER.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence analysis of cut cells.
Figure 2: Electron-microscopic analysis of cut cells.
Figure 3: Transport in Golgi-depleted cytoplasts.
Figure 4: Analysis of cargo-carrying structures in Golgi-depleted cytoplasts.
Figure 5: Reassembly of the Golgi ribbon in cytoplasts is microtubule-dependent.
Figure 6: Quantification of transport in cytoplasts.

Similar content being viewed by others

References

  1. Shima, D. T. & Warren, G. in Dynamics of Cell Division: Frontiers in Molecular Biology (eds Endow, S. A. & Glover, D. M.) 248–269 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  2. Cabrera-Poch, N., Pepperkok, R. & Shima, D. T. Inheritance of the mammalian Golgi apparatus during the cell cycle. Biochim. Biophys. Acta 1404, 139–151 (1998).

    Article  Google Scholar 

  3. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    Article  CAS  Google Scholar 

  4. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S. & Klausner, R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989).

    Article  CAS  Google Scholar 

  5. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  6. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Article  CAS  Google Scholar 

  7. Pelham, H. R. Getting through the Golgi complex. Trends Cell Biol. 8, 45–49 (1998).

    Article  CAS  Google Scholar 

  8. Glick, B. S. & Malhotra, V. The curious status of the Golgi apparatus. Cell 95, 883–889 (1998).

    Article  CAS  Google Scholar 

  9. Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).

    Article  CAS  Google Scholar 

  10. Kuge, O. et al. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125, 51–65 (1994).

    Article  CAS  Google Scholar 

  11. Barlowe, C., d'Enfert, C. & Schekman, R. Purification and characterization of Sar1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268, 873–879 (1993).

    CAS  PubMed  Google Scholar 

  12. Shima, D. T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

    Article  CAS  Google Scholar 

  13. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).

    Article  CAS  Google Scholar 

  14. Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430 (1999).

    Article  CAS  Google Scholar 

  15. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  Google Scholar 

  16. Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430 (1991).

    CAS  PubMed  Google Scholar 

  17. Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997).

    Article  CAS  Google Scholar 

  18. Morre, D. J., Yunghans, W. N., Vigil, E. L. & Keenan, T. W. in Subcellular Studies (ed. Reid, E.) 195–235 (Longman, London, 1974).

    Google Scholar 

  19. Farmaki, T. et al. Forward and retrograde trafficking in mitotic animal cells. ER–Golgi transport arrest restricts protein export from the ER into COPII-coated structures. J. Cell Sci. 112, 589–600 (1999).

    CAS  PubMed  Google Scholar 

  20. Jesch, S. A. & Linstedt, A. D. The Golgi and endoplasmic reticulum remain independent during mitosis in HeLa cells. Mol. Biol. Cell 9, 623–635 (1998).

    Article  CAS  Google Scholar 

  21. Jokitalo, E., Cabrera-Poch, N., Warren, G. & Shima, D. T. Golgi clusters do not fuse with the endoplasmic reticulum and persist during mitosis in animal cells. J. Cell Biol. (submitted).

  22. Maniotis, A. & Schliwa, M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67, 495–504 (1991).

    Article  CAS  Google Scholar 

  23. Seelig, H. P. et al. Molecular genetic analyses of a 376-kilodalton Golgi complex membrane protein (giantin). Mol. Cell. Biol. 14, 2564–2576 (1994) (retracted in Mol. Cell. Biol. 15, 591; 1995).

    Article  CAS  Google Scholar 

  24. Mundy, D. I. & Warren, G. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein. J. Cell Biol. 116, 135–146 (1992).

    Article  CAS  Google Scholar 

  25. Schweizer, A., Rohrer, J., Slot, J. W., Geuze, H. J. & Kornfeld, S. Reassessment of the subcellular localization of p63. J. Cell Sci. 108, 2477–2485 (1995).

    CAS  PubMed  Google Scholar 

  26. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726 (1995).

    Article  CAS  Google Scholar 

  27. Kawano, J., Ide, S., Oinuma, T. & Suganuma, T. A protein-specific monoclonal antibody to rat liver beta 1→4 galactosyltransferase and its application to immunohistochemistry. J. Histochem. Cytochem. 42, 363–369 (1994).

    Article  CAS  Google Scholar 

  28. Schiebel, E. γ-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr. Opin. Cell Biol. 12, 113–118 (2000).

    Article  CAS  Google Scholar 

  29. Salama, N. R., Chuang, J. S. & Schekman, R. W. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217 (1997).

    Article  CAS  Google Scholar 

  30. Shugrue, C. A. et al. Identification of the putative mammalian orthologue of Sec31p, a component of the COPII coat. J. Cell Sci. 112, 4547–4556 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bannykh, S. I. & Balch, W. E. Membrane dynamics at the endoplasmic reticulum–Golgi interface. J. Cell Biol. 138, 1–4 (1997).

    Article  CAS  Google Scholar 

  32. Hauri, H. P., Kappeler, F., Andersson, H. & Appenzeller, C. ERGIC-53 and traffic in the secretory pathway. J. Cell Sci. 113, 587–596 (2000).

    CAS  PubMed  Google Scholar 

  33. Alvarez, C., Fujita, H., Hubbard, A. & Sztul, E. ER to Golgi transport: requirement for p115 at a pre-Golgi VTC stage. J. Cell Biol. 147, 1205–1222 (1999).

    Article  CAS  Google Scholar 

  34. Terasaki, M. Dynamics of the endoplasmic reticulum and Golgi apparatus during early sea urchin development. Mol. Biol. Cell 11, 897–914 (2000).

    Article  CAS  Google Scholar 

  35. Kano, F., Nagayama, K. & Murata, M. Reconstitution of the Golgi reassembly process in semi-intact MDCK cells. Biophys. Chem. 84, 261–268 (2000).

    Article  CAS  Google Scholar 

  36. Wacker, I. et al. Microtubule-dependent transport of secretory vesicles visualized in real-time with a GFP-tagged secretory protein. J. Cell Sci. 110, 1453–1463 (1997).

    CAS  Google Scholar 

  37. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  Google Scholar 

  38. Sacchetti, A. & Alberti, S. Protein tags enhance GFP folding in eukaryotic cells. Nature Biotechnol. 17, 1046 (1999).

    Article  CAS  Google Scholar 

  39. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus in the absence of Golgi enzymes. Nature (in the press).

  40. Nickel, W., Brugger, B. & Wieland, F. T. Protein and lipid sorting between the endoplasmic-reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9, 493–501 (1998).

    Article  CAS  Google Scholar 

  41. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  Google Scholar 

  42. Nilsson, T., Jackson, M. & Peterson, P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707–718 (1989).

    Article  CAS  Google Scholar 

  43. Seemann, J., Jokitalo, E. J. & Warren, G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol. Biol. Cell 11, 635–645 (2000).

    Article  CAS  Google Scholar 

  44. Pepperkok, R. et al. Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Shorter, M. Lowe, A. Price, H. Meyer, J. Seemann and D. Sheff for discussion and reading of the manuscript. We also thank D. Shima, M. Lowe, D. Mundy, H-P. Hauri, F. Gorelick, F. Watt, G. M. Waters and T. Suganuma for antibodies, and A. Maniotis for advice on microsurgery. We are grateful to M. Kabaservice for help with preparation of the manuscript. This work was supported by NIH grant no. GM60478-01 (to G.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Warren.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelletier, L., Jokitalo, E. & Warren, G. The effect of Golgi depletion on exocytic transport. Nat Cell Biol 2, 840–846 (2000). https://doi.org/10.1038/35041089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing