Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites

Abstract

Both scaled laboratory experiments and numerical models of terrestrial mantle plumes produce ‘balloon-on-a-string’ structures, with a bulbous head followed by a stem-like tail. Discussions have focused on whether their initial upwelling heads are hotter than the tails or cooler, as a result of entrainment of ambient mantle during ascent1,2,3, and also on whether initial plume upwelling is a newtonian or non-newtonian process4,5. The temperature of the mantle delivered to the base of the lithosphere is a critical parameter in such debates. Dry continental magmas can normally contribute little to this topic because their hottest (ultramafic) examples can be expected to be trapped, owing to their density, beneath the Moho. Here we report a rare case in which olivine (with 93.3% forsterite; Mg2SiO4) phenocrysts, precipitated from an unerupted komatiitic melt (24% MgO) of the Tristan mantle plume head 132 Myr ago, were carried to upper-crust levels in northwest Namibia by less Mg-rich (9.6–18.5% MgO) magmas. We infer that the hidden melt, generated when the plume impinged on the base of the lithosphere, originated in the mantle with a potential temperature of 1,700 °C. This is 400 °C above ambient and much hotter than the temperatures previously calculated for steady-state Phanerozoic mantle plumes3,6,7,8. Published data show that the same conclusion can be reached for the initial Iceland and Galapagos plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Affinities of the Horingbaai dyke olivines.
Figure 2: Anhydrous PT diagram for mantle lherzolite KLB-1—the only peridotite for which sufficient experimental data have been published25,26.

Similar content being viewed by others

References

  1. Griffiths, R. W. & Campbell, I. H. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett. 99, 66–78 (1990).

    Article  ADS  Google Scholar 

  2. Farnetani, C. G. & Richards, M. A. Numerical investigation of the mantle plume initiation model for flood basalt events. J. Geophys. Res. 99, 13813–13833 ( 1994); Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett. 136, 251– 267 (1995).

    Article  Google Scholar 

  3. White, R. S. & McKenzie, D. Mantle plumes and flood basalts. J. Geophys. Res. 100, 17543– 17585 (1995).

    Article  ADS  CAS  Google Scholar 

  4. van Keken, P. Evolution of starting mantle plumes: a comparison between numerical and laboratory models. Earth Planet. Sci. Lett. 148, 1– 11 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Larsen, T. B., Yuen, D. A. & Storey, M. Ultrafast mantle plumes and implications for flood basalt volcanism in the North Atlantic Region. Tectonophysics 311, 31–43 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Watson, S. & McKenzie, D. Melt generation by plumes: a study of Hawaiian volcanism. J. Petrol. 32, 501 –537 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Shen, Y., Solomon, S. C., Bjarnason, I. Th. & Wolfe, C. J. Seismic evidence for a lower-mantle origin of the Icelandic plume. Nature 395, 62–65 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Gill, R. C. O., Pedersen, A. K. & Larsen, J. G. in Magmatism and the Causes of Continental Break-up (eds Storey, B. C., Alabaster, T. & Pankhurst, R. J.) 335 –348 (Spec. Publ. 68, Geological Society, London, 1992).

    Google Scholar 

  11. Nisbet, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. J. Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30, 291–307 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Echeverria, L. M. & Aitken, B. G. Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona island, Colombia. Contrib. Mineral. Petrol. 92, 428– 436 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Francis, D. The Baffin Bay lavas and the value of picrites as analogues of primary magmas. Contrib. Mineral. Petrol. 89, 144– 154 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Le Bas, M. J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. (in the press).

  15. Duncan, A. R., Armstrong, R. A., Erlank, A. J., Marsh, J. S. & Watkins, R. T. in Mafic Dykes and Emplacement Mechanisms (eds Parker, A. J., Rickwood, P. C. & Tucker, D. H.) 119–129 (Balkema, Rotterdam, 1990).

    Google Scholar 

  16. Schmitt, A. K., Emmermann, R., Trumbull, R. B., Bühn, B. & Henjes-Kunst, F. Petrogenesis and 40Ar/39Ar geochronology of the Brandberg complex, Namibia: evidence for a major mantle contribution in metaluminous and peralkaline granites. J. Petrol. 41, 1207–1239 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Libourel, G. Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib. Mineral. Petrol. 136, 63–80 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Li, J.-P., O'Neill, H. St C. & Seifert, F. Subsolidus phase relations in the system MgO-SiO 2-Cr-O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium. J. Petrol. 36, 107–132 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Ulmer, P. The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib. Mineral. Petrol. 101, 261– 273 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Gladczenko, T. P. et al. South Atlantic volcanic margins. J. Geol. Soc. Lond. 154, 465–470 ( 1997).

    Article  Google Scholar 

  21. Miller, R. McG. in Evolution of the Damara Orogen of South West Africa/Namibia (ed. Miller, R. McG.) 431–515 (Spec. Publ. 11, Geological Society of South Africa, 1983).

    Google Scholar 

  22. Garcia, M. O., Hulsebosch, T. P. & Rhodes, J. M. in Mauna Loa Revealed: Structure, Composition, History and Hazards (eds Rhodes, J. M. & Lockwood, J. P.) 219– 239 (Geophys. Monogr. 92, American Geophysical Union, Washington DC, 1995).

    Book  Google Scholar 

  23. Monierth, C., Johnston, A. D. & Cashman, K. V. in Mauna Loa Revealed: Structure, Composition, History and Hazards (eds Rhodes, J. M. & Lockwood, J. P.) 207– 217 (Geophys. Monogr. 92, American Geophysical Union, Washington DC, 1995).

    Book  Google Scholar 

  24. Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems; tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib. Mineral. Petrol. 133, 297– 313 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Takahashi, E., Shimazaki, T., Tsuzaki, Y. & Yoshida, H. Melting study of a peridotite KLB-1 to 6.5 GPa and the origin of basaltic magmas. Philos. Trans. R. Soc. Lond. A 342, 105–120 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Herzberg, C. & Zhang, J. Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. 101, 8271–8295 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Arndt, N. T., Kerr, A. C. & Tarney, J. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts. Earth Planet. Sci. Lett. 146 , 289–301 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Hards, V. L., Kempton, P. D. & Thompson, R. N. The heterogeneous Iceland plume: new insights from the alkaline basalts of Snaefell volcanic centre. J. Geol. Soc. Lond. 152, 1003–1009 ( 1995).

    Article  CAS  Google Scholar 

  29. Hauri, E. H. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 ( 1996).

    Article  ADS  CAS  Google Scholar 

  30. Gibson, S. A., Thompson, R. N. & Dickin, A. P. Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet. Sci. Lett. 174, 355–374 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Byers, C., Garcia, M. & Muenow, D. Volatiles in pillow rim glasses from Loihi and Kilauea volcanoes, Hawaii. Geochim. Cosmochim. Acta 49, 1887–1896 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Sack, R. O. & Ghiorso, M. S. Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications. Am. Mineral. 76, 827–847 ( 1991).

    CAS  Google Scholar 

  33. Falloon, T. J., Green, D. H., Danyushevsky, L. V. & Faul, U. H. Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J. Petrol. 40, 1343– 1375 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Arndt, M. Bickle, R. Hardy, D. Jerram, G. Milne, S. Milner, A.-K. Nguno, S. Reed, P. M. Smith and M. Tucker for assistance and discussions, and M. Garcia, R. Gill, G. Pearson and P. M. Smith for comments that substantially improved the manuscript. Durham and Cambridge universities funded the research in part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Thompson.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R., Gibson, S. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407, 502–506 (2000). https://doi.org/10.1038/35035058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing