Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback

Abstract

The onset of the Palaeocene/Eocene thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5–7 °C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing2,3 and the pulsed release of 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs4,5,6,7. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms8. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium—indicative of export palaeoproductivity—at times of maximum global temperatures and peak excursion values of δ13C. The unusually rapid return of δ13C to values similar to those before the methane release7 and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeocene location of the sites analysed for biogenic-barium concentrations across the P/E boundary.
Figure 2: Variation across the P/E boundary of the properties of two deep-sea sediment cores.
Figure 3: Scanning electron micrographs of marine barite microcrystals (1–5 µm in size) from samples during (b) and after (a) the P/E boundary.

Similar content being viewed by others

References

  1. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 ( 1991).

    Article  ADS  Google Scholar 

  2. Eldholm, O. & Thomas, E. Environmental impact of volcanic margin formation. Earth Planet. Sci. Lett. 117, 319–329 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Rea, D. K., Zachos, J. C., Owen, R. M. & Gingerich, P. D. Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 117–128 ( 1990).

    Article  Google Scholar 

  4. Bains, S., Corfield, R. M. & Norris, R. D. Mechanisms of climate warming at the end of the Paleocene. Science 285, 724–727 (1999).

    Article  CAS  Google Scholar 

  5. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  6. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 ( 1997).

    Article  ADS  CAS  Google Scholar 

  7. Dickens, G. R. Carbon addition and removal during the Late Palaeocene Thermal Maximum: Basic theory with a preliminary treatment of the isotope record at Ocean Drilling Program Site 1051, Blake Nose. In Western North Atlantic Palaeogene and Cretaceous Paleoceanography (eds Kroon, D., Norris, R. D. &&amp&amp&amp& Klaus, A.)(Special Publication, Geological Society, London, in the press).

  8. Zachos, J. C. & Dickens, G. R. An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM. GFF 122, 188–189 (2000).

    Article  CAS  Google Scholar 

  9. Budyko, M. Climate catastrophes. Glob. Planet. Change 20, 281–288 (1999).

    Article  ADS  Google Scholar 

  10. Norris, R. D. & Röhl, U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401, 775–778 ( 1999).

    Article  ADS  CAS  Google Scholar 

  11. Kvenvolden, K. A. in Gas Hydrates (eds Henriet, J. -P. & Mienert, J.) 9 –30 (Geological Society, London, 1998 ).

    Google Scholar 

  12. Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 ( 1992).

    Article  ADS  CAS  Google Scholar 

  13. Kelly, D. C., Bralower, T. J. & Zachos, J. C. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 139– 161 (1998).

    Article  Google Scholar 

  14. Pak, D. K. & Miller, K. G. Late Paleocene to early Eocene benthic foraminiferal stable isotopes and assemblages: implications for deepwater circulation. Paleoceanography 7, 405– 422 (1992).

    Article  ADS  Google Scholar 

  15. Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197 ( 1982).

    Article  ADS  Google Scholar 

  16. Corfield, R. M. Palaeocene oceans and climate: An isotopic perspective. Earth-Sci. Rev. 37, 225–252 ( 1994).

    Article  ADS  CAS  Google Scholar 

  17. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200– 206 (1998).

    Article  CAS  Google Scholar 

  19. Robert, C. & Kennett, J. P. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay-mineral evidence. Geology 22, 211–214 (1994).

  20. Thomas, D. J., Bralower, T. J. & Zachos, J. C. New evidence for subtropical warming during the late Paleocene thermal maximum: Stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography 14, 561–570 (1999).

    Article  ADS  Google Scholar 

  21. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: A geochemical proxy for productivity. Paleoceanography 7, 163–181 (1992).

    Article  ADS  Google Scholar 

  22. Paytan, A., Kastner, M. & Chavez, F. P. Glacial to interglacial fluctuations in productivity in the Equatorial Pacific as indicated by marine barite. Science 274, 1355–1357 ( 1996).

    Article  ADS  CAS  Google Scholar 

  23. Paytan, A. & Kastner, M. Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth Planet. Sci. Lett. 142, 439–450 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D. & Herbert, T. Marine barite as a monitor of seawater strontium isotope composition. Nature 366, 445–449 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Legeleux, F. & Reyss, J. 228Ra/226Ra activity ratio in oceanic settling particles: implications regarding the use of barium as a proxy for paleoproductivity reconstruction. Deep-Sea Res. I 43, 1857–1863 ( 1996).

    Article  CAS  Google Scholar 

  26. Bishop, J. K. B. The barite-opal-organic carbon association in oceanic particulate matter. Nature 332, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Bernstein, R. E., Byrne, R. H. & Schijf, J. Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. I 45, 491– 505 (1998).

    Article  Google Scholar 

  28. Bertram, M. A. & Cowen, J. P. Morphological and compositional evidence for biotic precipitation of marine barite. J. Mar. Res. 55, 577–593 (1997).

    Article  CAS  Google Scholar 

  29. Schmitz, B., Charisi, S. D., Thompson, E. I. & Speijer, R. P. Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova 9, 95–99 (1997).

    Article  ADS  Google Scholar 

  30. McManus, J. et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 62 , 3453–3473 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Beerling, D. J. The responses of the terrestrial carbon cycle to global change across the Paleocene/Eocene boundary. GFF 122, 23 (2000).

    Article  Google Scholar 

  32. Murray, R. W., Leinen, M. & Isern, A. R. Biogenic flux of Al to sediment in the central Equatorial Pacific Ocean: Evidence for increased productivity during glacial periods. Paleoceanography 8, 651– 670 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Paige, S. James, N. Walsh, S. Wyatt and J. Cartlidge for their technical assistance; and G. Dickens, M. Delaney and A. Paytan for discussions and comments. We also thank A. Paytan for use of her laboratory to separate barite. Samples for this study were taken from cores drilled and supplied by the Ocean Drilling Program. The Natural Environment Research Council (UK), NSF and JOI/USSP supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Bains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bains, S., Norris, R., Corfield, R. et al. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000). https://doi.org/10.1038/35025035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing