Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chfr defines a mitotic stress checkpoint that delays entry into metaphase

Abstract

Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase1,2. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects2,3,4,5,6,7,8. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer9,10,11,12,13. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteins containing FHA and ring finger domains.
Figure 2: Expression of chfr.
Figure 3: Chfr regulates the response of cells to mitotic stress.
Figure 4: Chfr delays entry into metaphase in response to mitotic stress.
Figure 5: Centrosome separation and cyclin B/cdc2 activity in synchronized DLD1- neo and DLD1-chfr cells.
Figure 6: Response of DLD1-neo and DLD1-chfr cells to transient exposure to mitotic stress.

Similar content being viewed by others

References

  1. McIntosh, J. R. & Koonce, M. P. Mitosis. Science 246, 622–628 ( 1989).

    Article  ADS  CAS  Google Scholar 

  2. Jordan, M. A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10, 123–130 ( 1998).

    Article  CAS  Google Scholar 

  3. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821– 1828 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 ( 1998).

    Article  ADS  CAS  Google Scholar 

  6. Elledge, S. J. Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 279, 999–1000 ( 1998).

    Article  ADS  CAS  Google Scholar 

  7. Amon, A. The spindle checkpoint. Curr. Opin. Genet. Dev. 9, 69–75 (1999).

    Article  CAS  Google Scholar 

  8. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246 –248 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Cahill, D. P. et al. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58, 181– 187 (1999).

    Article  CAS  Google Scholar 

  11. Yamaguchi, K., Okami, K., Hibi, K., Wehage, S. L., Jen, J. & Sidransky, D. Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett. 139, 183–187 ( 1999).

    Article  CAS  Google Scholar 

  12. Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  Google Scholar 

  13. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  Google Scholar 

  14. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347–349 (1995).

    Article  CAS  Google Scholar 

  15. Lovering, R. et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc. Natl Acad. Sci. USA 90, 2112–2116 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Borden, K. L. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532–1541 (1995).

    Article  CAS  Google Scholar 

  17. Murone, M. & Simanis, V. The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised. EMBO J. 15, 6605–6616 ( 1996).

    Article  CAS  Google Scholar 

  18. Holliday, R. & Grigg, G. W. DNA methylation and mutation. Mutat. Res. 285, 61–67 ( 1993).

    Article  CAS  Google Scholar 

  19. Furuno, N., den Elzen, N. & Pines, J. Human cyclin A is required for mitosis until mid prophase. J. Cell Biol. 147, 295– 306 (1999).

    Article  CAS  Google Scholar 

  20. Zimmerman, W., Sparks, C. A. & Doxsey, S. J. Amorphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11, 122– 128 (1999).

    Article  CAS  Google Scholar 

  21. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    Article  CAS  Google Scholar 

  22. Muhua, L., Adames, N. R., Murphy, M. D., Shields, C. R. & Cooper, J. A. A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393, 487–491 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 13777–13782 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Janss, A. J. et al. Caffeine and staurosporine enhance the cytotoxicity of cisplatin and camptothecin in human brain tumor cell lines. Exp. Cell Res. 243, 29–38 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Maul for the gift of autoimmune serum Ab598; A. Janss for advice on cell synchronization; J. Bothos, M. Summers, M. Appel and M. Shayhorn for technical help; M. Scolnick for editing the manuscript; and E. Stavridi, N. Chehab, G. Rovera, F. Rauscher III and P. Leder for comments and advice. We also thank the Wistar Institute's NCI-supported Microscopy, Sequencing and Bioinformatics Facilities for technical help and access to their equipment. D.M.S. is supported by an NCI Training Grant awarded to the Wistar Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanos D. Halazonetis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scolnick, D., Halazonetis, T. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406, 430–435 (2000). https://doi.org/10.1038/35019108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing