Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation

Abstract

PHYSICAL mapping of chromosomes would be facilitated by methods of breaking large DNA into manageable fragments, or cutting uniquely at genetic markers of interest. Key issues in the design of sequence-specific DNA cleaving reagents are the specificity of binding, the generalizability of the recognition motif, and the cleavage yield. Oligonucleotide-directed triple helix for-mation is a generalizable motif for specific binding to sequences longer than 12 base pairs within DNA of high complexity1–3. Studies with plasmid DNA show that triple helix formation can limit the operational specificity of restriction enzymes to endonu-clease recognition sequences that overlap oligonucleotide-binding sites4,5. Triple helix formation, followed by methylase protection, triple helix-disruption, and restriction endonuclease digestion produces near quantitative cleavage at the single overlapping triple helix–endonuclease site4,5. As a demonstration that this technique may be applicable to the orchestrated cleavage of large genomic DNA, we report the near quantitative single-site enzymatic cleavage of the Saccharomyces cerevisiae genome mediated by triple helix formation. The 340-kilobase yeast chromosome HI was cut uniquely at an overlapping homopurine–Ec0RI target site 27 base pairs long to produce two expected cleavage products of 110 and 230 kilobases. No cleavage of any other chromosome was detected. The potential generalizability of this technique, which is capable of near quantitative cleavage at a single site in at least 14 megabase pairs of DNA, could enable selected regions of chromosomal DNA to be isolated without extensive screening of genomic libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moser, H. E. & Dervan, P. B. Science 238, 645–650 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Strobel, S. A., Moser, H. E. & Dervan, P. B. J. Am. chem. Soc. 110, 7927–7929 (1988).

    Article  CAS  Google Scholar 

  3. Strobel, S. A. & Dervan, P. B. Science 249, 73–75 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Maher, L. J., Wold, B. & Dervan, P. B. Science 245, 725–730 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hanvey, J. C., Shimizu, M. & Wells, R. D. Nucleic Acids Res. 18, 157–161 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barlow, D. P. & Lehrach, H. Trends Genet. 3, 167–171 (1987).

    Article  CAS  Google Scholar 

  7. Wenzlau, J. M., Saldanha, R. J., Butow, R. A. & Perlman, P. S. Cell 56, 421–430 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Delahodde, A. et al. Cell 56, 431–441 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Patel, Y., Van Cott, E., Wilson, G. G. & McClelland, M. Nucleic Acids Res. 18, 1603–1607 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weil, M. D. & McClelland, M. Proc. natn Acad. Sci. U.S.A. 86, 51–55 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Koob. M., Grimes, E. & Szybalski, W. Science 241, 1084–1086 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Koob, M. & Szybalski, W. Science 250, 271–273 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Praseuth, D. et al. Proc. natn Acad. Sci. U.S.A. 85, 1349–1353 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Lyamichev, V. I. et al. Nucleic Acids Res. 16, 2165–2178 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felsenfeld, G., Davies, D. R. & Rich, A. J. Am. chem. Soc. 79, 2023–2024 (1957).

    Article  CAS  Google Scholar 

  16. Lipsett, M. N. J. biol. Chem. 239, 1256–1260 (1964).

    CAS  PubMed  Google Scholar 

  17. Rajagopal, P. & Feigon, J. Nature 339, 637–640 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Povsic, T. J. & Dervan, P. B. J. Am. chem. Soc. 111, 3059–3061 (1989).

    Article  CAS  Google Scholar 

  19. Griffin, L. C. & Dervan, P. B. Science 245, 967–971 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Horne, D. A. & Dervan, P. B. J. Am. chem. Soc. 112, 2435–2437 (1990).

    Article  CAS  Google Scholar 

  21. Andreadis, A., Hsu, Y. P., Kohlhaw, G. B. & Schimmel, P. Cell 31, 319–325 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Mortimer, R. K. & Schild, D. Microbiol. Rev. 49, 181–212 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Carle, G. F. & Olson, M. V. Proc. natn Acad. Sci. U.S.A. 82, 3756–3760 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Schwartz, D. C. & Cantor, C. R. Cell 37, 67–75 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Carle, G. F. & Olson, M. V. Nucleic Acids Res. 12, 5647–5664 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keesey, J. K., Bigelis, R. & Fink, G. R. J. biol. Chem. 254, 7427–7433 (1979).

    CAS  PubMed  Google Scholar 

  27. Maher, L. J., Dervan, P. B. & Wold, B. Biochemistry 29, 8820–8826 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobel, S., Dervan, P. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350, 172–174 (1991). https://doi.org/10.1038/350172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350172a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing