Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface

Abstract

Spontaneous pattern formation by self-assembly is of long-standing1,2,3 and continuing interest4,5 not only for its aesthetic appeal6,7, but also for its fundamental8,9,10,11,12,13,14,15,16,17,18 and technological relevance19. So far, the study of self-organization processes has mainly focused on static structures, but dynamic systems20,21,22—those that develop order only when dissipating energy—are of particular interest for studying complex behaviour23,24. Here we describe the formation of dynamic patterns of millimetre-sized magnetic disks at a liquid–air interface, subject to a magnetic field produced by a rotating permanent magnet. The disks spin around their axes with angular frequency equal to that of the magnet, and are attracted towards its axis of rotation while repelling each other. This repulsive hydrodynamic interaction is due to fluid motion associated with spinning; the interplay between attractive and repulsive interactions leads to the formation of patterns exhibiting various types of ordering, some of which are entirely new. This versatile system should lead to a better understanding of dynamic self-assembly, while providing a test-bed for stability theories of interacting point vortices25,26,27,28 and vortex patches29.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and magnetic force profiles.
Figure 2: Dynamic patterns formed by various numbers (n) of disks rotating at the ethylene glycol/water–air interface.
Figure 3: Illustrations of various effects controlling the dimensions and the stability of patterns.
Figure 4: Various phenomena observed in systems of magnetized rotating disks.

Similar content being viewed by others

References

  1. Mayer, A. M. Floating magnets. Nature 18, 258– 260 (1878).

    Article  ADS  Google Scholar 

  2. Derr, L. A photographic study of Mayer's floating magnets. Proc. Am. Acad. Arts Sci. 44, 525–528 ( 1909).

    Article  CAS  Google Scholar 

  3. Monckman, J. On the arrangement of electrified cylinders when attracted by an electrified sphere. Proc. Camb. Phil. Soc. 6, 179– 181 (1888).

    Google Scholar 

  4. Schecter, D. A., Dubin, D. H. E., Fine, K. S. & Driscoli, C. F. Vortex crystals from 2D Euler flow: experiment and simulation. Phys. Fluids 11, 905–914 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Bubeck, R., Bechinger C., Neser, S. & Leiderer, P. Melting and reentrant freezing of two-dimensional colloidal crystals in confined geometry. Phys. Rev. Lett. 82, 3364–3367 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Ghyka, M. The Geometry of Art and Life (Dover, New York, 1977 ).

    MATH  Google Scholar 

  7. Ball, P. The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, New York, 1999).

    MATH  Google Scholar 

  8. Whitesell, J. K. Organised Molecular Assemblies in the Solid State (Wiley, New York, 1999).

    Google Scholar 

  9. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn Engl. 35, 1155–1196 (1996).

    CAS  Google Scholar 

  10. Lounasmaa, O. V. & Thuneberg, E. Vortices in rotating superfluid 3He. Proc. Natl Acad. Sci. USA 96, 7760–7767 ( 1999).

    Article  ADS  CAS  Google Scholar 

  11. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Bowden, N., Choi, I. S., Grzybowski, B. A. & Whitesides, G. M. Mesoscale self-assembly of hexagonal plates using lateral capillary forces: synthesis using the “capillary bond”. J. Am. Chem. Soc. 121, 5373–5391 ( 1999).

    Article  CAS  Google Scholar 

  13. Shinbrot, T. Competition between randomizing impacts and inelastic collisions in granular pattern formation. Nature 389, 574– 576 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Burns, M. M., Fournier, J. M. & Golovchenko, J. A. Optical matter—crystallization and binding in intense optical fields. Science 249, 749–754 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Murray, C. A. & Grier, D. G. Colloidal crystals—solid particles suspended in fluid form ordered arrays with unusual and useful physical properties. Am. Sci. 83, 238– 245 (1995).

    ADS  Google Scholar 

  16. Thompson, D'A. On Growth and Form (Dover, New York, 1992).

    Book  Google Scholar 

  17. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998).

    Article  CAS  Google Scholar 

  18. Berg, H. & Budrene, E. O. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).

    Article  ADS  Google Scholar 

  19. GomezLopez, M., Preece, J. A. & Stoddart, J. F. The art and science of self-assembling molecular machines. Nanotechnology 7, 183–192 ( 1996).

    Article  ADS  CAS  Google Scholar 

  20. Koschmieder, A. Benard Cells and Taylor Vortices (Cambridge Univ. Press, New York, 1993).

    MATH  Google Scholar 

  21. Jakubith, S., Rotermund, H. H., Engel, W., von Oertzen, A. & Ertl, G. Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013– 3016 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Engelborghs, Y. Microtubules—dissipative structures formed by self-assembly. Biosens. Bioelectron. 9, 685–689 (1994).

    Article  CAS  Google Scholar 

  23. Lindgren, K., Moore, C. & Nordahl, M. Complexity of two-dimensional patterns. J. Stat. Phys. 91, 909–951 (1998).

    Article  MathSciNet  Google Scholar 

  24. Singh, R., Maru, V. M. & Moharir, P. S. Complex chaotic systems and emergent phenomena. J. Nonlinear Sci. 8, 235–259 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  25. Havelock, T. H. The stability of motion of rectilinear vortices in ring formation. Phil. Mag. 11, 617–633 ( 1931).

    Article  Google Scholar 

  26. Morton, W. B. Vortex polygons. Proc. R. Irish Acad. A 42, 21–29 (1935).

    MATH  Google Scholar 

  27. Aref, H. & Vainchtein, D. L. Point vortices exhibit asymmetric equilibria. Nature 392, 769– 770 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Thomson, J. J. A Treatise on the Motion of Vortex Rings (Macmillan, London, 1883).

    MATH  Google Scholar 

  29. Dritschel, D. G. The stability and energetics of corotating uniform vortices. J. Fluid Mech. 157, 95–134 (1985).

    Article  ADS  Google Scholar 

  30. Schonberg, J. A. & Hinch, E. J. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517–524 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Whitesides.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzybowski, B., Stone, H. & Whitesides, G. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000). https://doi.org/10.1038/35016528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing