Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enantioselective magnetochiral photochemistry

Abstract

Many chemical and physical systems can occur in two forms distinguished solely by being mirror images of each other. This phenomenon, known as chirality, is important in biochemistry, where reactions involving chiral molecules often require the participation of one specific enantiomer (mirror image) of the two possible ones. In fact, terrestrial life utilizes only the L enantiomers of amino acids, a pattern that is known as the ‘homochirality of life’ and which has stimulated long-standing efforts to understand its origin1. Reactions can proceed enantioselectively if chiral reactants or catalysts are involved, or if some external chiral influence is present2. But because chiral reactants and catalysts themselves require an enantioselective production process, efforts to understand the homochirality of life have focused on external chiral influences. One such external influence is circularly polarized light, which can influence the chirality of photochemical reaction products2,13,14. Because natural optical activity, which occurs exclusively in media lacking mirror symmetry, and magnetic optical activity, which can occur in all media and is induced by longitudinal magnetic fields, both cause polarization rotation of light, the potential for magnetically induced enantioselectivity in chemical reactions has been investigated, but no convincing demonstrations of such an effect have been found2,3,4. Here we show experimentally that magnetochiral anisotropy—an effect linking chirality and magnetism5,6,7—can give rise to an enantiomeric excess in a photochemical reaction driven by unpolarized light in a parallel magnetic field, which suggests that this effect may have played a role in the origin of the homochirality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical characteristics of the Cr(III)tris-oxalato complex.
Figure 2: Photoresolution set-up and typical result.
Figure 3: Results of photoresolution with unpolarized light in a magnetic field.

Similar content being viewed by others

References

  1. Cline, D. B. (ed.) Physical Origin of Homochirality in Life (American Institute of Physics, New York, 1996).

    Google Scholar 

  2. Avalos, M. et al. Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 98, 2391– 2404 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Mason, S. F. in Circular Dichroism (eds Nakanishi, K., Berova, N. & Woody, R. W.) Ch. 2 (VCH, New York, 1994).

    Google Scholar 

  4. Bonner, W. A. Chirality and life. Orig. Life Evol. Biosphere 25, 175–190 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493 –494 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Kleindienst, P. & Wagnière, G. Interferometric detection of magnetochiral birefringence. Chem. Phys. Lett. 288, 89–97 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Rikken, G. L. J. A. & Raupach, E. Pure and cascaded magnetochiral anisotropy in optical absorption. Phys. Rev. E 58, 5081–5084 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Barron, L. D. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).

    Article  CAS  Google Scholar 

  9. Barron, L. D. Can a magnetic field induce absolute asymmetric synthesis? Science 266, 1491–1492 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Portigal, D. L. & Burstein, E. Magneto-spatial dispersion effects on the propagation of electromagnetic radiation in crystals. J. Phys. Chem. Solids 32, 603– 608 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Baranova, N. B., Bogdanov, Yu. V. & Zeldovich, B. Ya. Electrical analog of the Faraday effect and other new optical effects in liquids. Opt. Commun. 22, 243–247 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Baranova, N. B. & Zeldovich, B. Ya. Theory of a new linear magnetorefractive effect in liquids. Mol. Phys. 38, 1085–1098 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Rau, H. Asymmetric photochemistry in solution. Chem. Rev. 83, 535–547 (1983).

    Article  CAS  Google Scholar 

  14. Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 92, 741–770 (1992).

    Article  CAS  Google Scholar 

  15. Barron, L. D. & Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715– 730 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Stevenson, K. L. & Verdieck, J. F. Partial photoresolution II. Application to some chromium complexes. Mol. Photochem. 1, 271–288 (1969).

    CAS  Google Scholar 

  17. McCaffery, A. J., Mason, S. F. & Ballard, R. E. Optical rotatory power of coordination compounds. Part III The absolute configurations of trigonal metal complexes. J. Chem. Soc. 2883–2892 ( 1965).

  18. McCaffery, A. J., Stephens, P. J. & Schatz, P. N. The magnetic optical activity of d → d transitions. Octahedral chromium(III), cobalt(III), nickel(II) and manganese(II) complexes. Inorg. Chem. 6, 1614–1625 (1967).

    Article  CAS  Google Scholar 

  19. Pracejus, H. Asymmetrische Synthesen. Fortschr. Chem. Forsch. 8, 493–553 (1967).

    Article  CAS  Google Scholar 

  20. Bernstein, W. J. The attempted asymmetric synthesis of helicenes by photolysis under magnetic field. Thesis, Lawrence Berkeley Labs (1972).

  21. Teutsch, H. Zur Enstehung optischer Aktivität in der Biosphäre: Ausgewählte Photoreaktionen als asymmetrischen Synthesen. Thesis, Univ. Bremen (1988).

  22. Wagnière, G. & Meier, A. Difference in the absorption coefficient of enantiomers for arbitrarily polarized light in a magnetic field—A possible source of chirality in molecular evolution. Experientia 39, 1090–1091 (1983).

    Article  Google Scholar 

  23. Engel, M. H. & Macko, S. A. Isotopic evidence for extraterrestial non-racemic amino acids in the Murchison meteorite. Nature 389, 265–268 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bailey, J. et al. Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science 281, 672–674 (1998).

    Article  ADS  PubMed  Google Scholar 

  25. Lyne, A. G. Origins of the magnetic fields of neutron stars. Nature 308, 605–606 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Krath for technical assistance; P. Wyder, G. Martinez and B. van Tiggelen for comments on the manuscript; W. A. Bonner for providing important information; L. Barron for discussions; and B. Malezieux for synthesizing the pure enantiomers. The Grenoble High Magnetic Field Laboratory is a “laboratoire conventionné aux universités UJF et INP de Grenoble”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. J. A. Rikken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikken, G., Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000). https://doi.org/10.1038/35016043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing