Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The major substrates for TAP in vivo are derived from newly synthesized proteins

Abstract

The transporter associated with antigen processing (TAP) is a member of the family of ABC transporters that translocate a large variety of substrates across membranes1. TAP transports peptides from the cytosol into the endoplasmic reticulum for binding to MHC class I molecules and for subsequent presentation to the immune system2. Here we follow the lateral mobility of TAP in living cells. TAP's mobility increases when it is inactive and decreases when it translocates peptides. Because TAP activity is dependent on substrate, the mobility of TAP is used to monitor the intracellular peptide content in vivo. Comparison of the diffusion rates in peptide-free and peptide-saturated cells indicates that normally about one-third of all TAP molecules actively translocate peptides. However, during an acute influenza infection TAP becomes fully employed owing to the production and degradation of viral proteins. Furthermore, TAP activity depends on continuing protein translation. This implies that MHC class I molecules mainly sample peptides that originate from newly synthesized proteins, to ensure rapid presentation to the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of TAP activity in vivo as measured by lateral mobility.
Figure 2: Soluble US6 blocks mobility changes of TAP.
Figure 3: Peptide-induced changes in TAP expressed in GLC2 cells lacking tapasin and MHC class I molecules.
Figure 4: Newly synthesized proteins are the major source for peptides translocated by TAP.

Similar content being viewed by others

References

  1. Higgins,C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  2. Pamer,E. & Cresswell,P. Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Vos,J. C., Spee,P., Momburg,F. & Neefjes,J. Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three-domain structure. J. Immunol. 163, 6679–6685 (1999).

    CAS  PubMed  Google Scholar 

  4. Vos,J. C., Reits,E. A. J., Wojcik-Jacobs, E. & Neefjes,J. Head–head/tail–tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP. Curr. Biol. 10, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wubbolts,R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135, 611–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kwon,G., Axelrod,D. & Neubig,R. R. Lateral mobility of tetramethylrhodamine (TMR) labelled G protein alpha and beta gamma subunits in NG 108-15 cells. Cell Signal. 6, 663–679 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  7. Schlessinger,J. et al. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl Acad. Sci. USA 73, 2409–2413 (1976).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marguet,D. et al. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 11, 231– 240 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Neefjes,J. J., Momburg,F. & Hammerling, G. J. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporters. Science 261, 769–771 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fenteany,G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. van Endert,P. M. et al. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1, 491–500 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Grommé,M. et al. The rational design of TAP inhibitors using peptide substrate modifications and peptidomimetics. Eur. J. Immunol. 27, 898–904 (1997).

    Article  PubMed  Google Scholar 

  13. Grommé,M. et al. Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl Acad. Sci. USA 96, 10326– 10331 (1999).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Neisig,A., Wubbolts,R., Zang,X., Melief,C. & Neefjes,J. Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J. Immunol. 156, 3196–3206 (1996).

    CAS  PubMed  Google Scholar 

  15. Lehner,P. J. & Trowsdale,J. Antigen presentation: coming out gracefully. Curr. Biol. 8, R605– R608 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Ahn,K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613– 621 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hengel,H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623– 632 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Livneh,E. et al. Large deletions in the cytoplasmic kinase domain of the epidermal growth factor receptor do not affect its lateral mobility. J. Cell Biol. 103, 327–331 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  19. de Leij,L. et al. Characterization of three new variant type cell lines derived from small cell carcinoma of the lung. Cancer Res. 45, 6024–6033 (1985).

    CAS  PubMed  Google Scholar 

  20. Saffman,P. G. & Delbruck,M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 3111– 3113 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cha,A., Snyder,G. E., Selvin,P. R. & Bezanilla,F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809 –813 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hayden,F. G., Rollins,B. S. & Hay,A. J. Anti-influenza virus activity of the compound LY253963. Antiviral Res. 14, 25– 38 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Krug,R. M., Alonso-Caplen,F. V., Julkunen, I. & Katze,M. G. in The Influenza Virus 89–152 (Plenum, New York, 1989).

    Google Scholar 

  24. Schubert,U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770 –774 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ortmann,B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306–1309 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Stam,N. J., Spits,H. & Ploegh,H. L. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299– 2306 (1986).

    CAS  PubMed  Google Scholar 

  27. Reits,E. A. J., Benham,A. M., Plougastel, B., Neefjes,J. & Trowsdale,J. Dynamics of proteasome distribution in living cells. EMBO J. 16, 6087– 6094 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Axelrod,D., Koppel,D. E., Schlessinger, J., Elson,E. & Webb,W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jovin,T. M. & Vaz,W. L. Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Methods Enzymol. 172, 471–513 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Döring, M. van Ham and K. Jalink for discussions, L. Oomen for help with the confocal microscope, R. Wubbolts for support with microinjection, P. Vlottes (ICN Holland) for a sample of ribavirin, and A. Benham and T. Schumacher for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Neefjes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reits, E., Vos, J., Grommé, M. et al. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000). https://doi.org/10.1038/35008103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing