Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells

Abstract

SPECIFIC genes can be inactivated or mutated in the mouse germ line1. The phenotypic consequences of the mutation can provide pivotal information on the function of the gene in development and maintenance of the mammalian organism. The procedure entails homologous recombination in embryonic stem cells, which, on fusion to recipient blastocysts, give rise to chimaeric mice that can transmit the mutant gene to their offspring. Inbreeding can then yield mice carrying the mutation in both alleles allowing the phenotypic analysis of recessive mutations. In addition to mice lacking a particular gene function, cell lines carrying null alleles of normally expressed genes can be instrumental in assessing the function of the gene. These cell lines can either be obtained from homozygous animals or, should the mutation be lethal early in embryonic development, be generated by consecutive inactivation of both alleles by homologous recombination in cultured cells. Here we illustrate the feasibility of this latter approach by the efficient consecutive inactivation of both alleles of the pim-1 proto-oncogene in embryonic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capecchi, M. R. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Berns, A., Cuypers, H. T., Selten, G. & Domen, J. in Pim-1 activation in T-cell lymphomas in Viral Carcinogenesis, Alfred Benzon Symposium (eds Kjeldgaard, N. O., Forchhammer, J. 211–224 (Munksgaard, Copenhagen, 1987).

    Google Scholar 

  3. Amson, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 8857–8861 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Sorrentino, V., McKinney, M. D., Giorgi, M., Geremia, R. & Fleissner, E. Proc. natn. Acad. Sci. U.S.A. 85, 2191–2195 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Van Lohuizen, M. et al. Cell 56, 673–682 (1989).

    Article  CAS  Google Scholar 

  6. Breuer, M. et al. Nature 340, 61–63 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Selten, G. et al. Cell 46, 603–611 (1986).

    Article  CAS  Google Scholar 

  8. Adair, G. M. et al. Proc. natn. Acad. Sci. U.S.A. 86, 4574–4578 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Capecchi, M. Nature 344, 105 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Adra, C. N., Boer, P. H. & McBurney, M. W. Gene 60, 65–74 (1987).

    Article  CAS  Google Scholar 

  12. Kozak, M. J. molec. Biol. 196, 947–950 (1987).

    Article  CAS  Google Scholar 

  13. Reiss, B., Sprengel, R. & Schaller, H. EMBO J. 3, 3317–3322 (1984).

    Article  CAS  Google Scholar 

  14. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  15. Linney, E., Davis, B., Overhauser, J., Chao, E. & Fan, H. Nature 308, 470–472 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Gritz, L. & Davies, J. Gene 25, 179–188 (1983).

    Article  CAS  Google Scholar 

  17. Kaster, K. R., Burgett, S. G., Rao, R. N. & Ingolia, T. D. Nucleic Acids Res. 11, 6895–6911 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

te Riele, H., Maandag, E., Clarke, A. et al. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990). https://doi.org/10.1038/348649a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348649a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing