Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of total strain from faulting using slip measurements

Abstract

IN the past twenty years it has become commonplace in seismology to sum seismic moments for large earthquakes to determine the contemporary fault slip rate1 or regional strain rate produced by earthquakes2. The method has several drawbacks: it often greatly underestimates deformation rates predicted from plate tectonics, either because the seismic history is of insufficient length or a substantial amount of fault slip is aseismic. Also, it can be used to calculate only current deformation rates, and cannot be applied to earlier geological eras or to estimate total strain. These problems can be overcome by applying the same methods to geological measures of fault displacement. Complete fault data sets, however, are generally not available. Here we show that faults obey general scaling laws in their size frequency distribution and in the relation between displacement and fault length. Combining these scaling relations, we demonstrate that the calculation of strain can be successfully applied to sparse geological data sets, because most strain is produced by the largest faults so that the data set need not be complete for small fault sizes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brune, J. J. geophys. Res. 73, 777–784 (1968).

    Article  ADS  Google Scholar 

  2. Kostrov, B. Izv. Acad. Sci. USSR Phys. Solid Earth. 1, 23–44 (1974).

    MathSciNet  Google Scholar 

  3. Davies, G. & Brune, J. Nature (Phys. Sci.) 229, 101–107 (1971).

    Article  ADS  Google Scholar 

  4. Molnar, P. Bull. seism. Soc. Am. 69, 115–134 (1979).

    Google Scholar 

  5. Sykes, L. & Quittmeyer, R. in Earthquake Prediction: an International Review M. Ewing Ser.4. (eds Simpson, D. & Richards, P.) 217–247 (American Geophysical Union, Washington, DC, 1981).

    Google Scholar 

  6. Jackson, J. & McKenzie, D. Geophys. J. R. astr. Soc. 93, 45–73 (1988).

    Article  Google Scholar 

  7. Ekstrom, G. & England, P. J. geophys. Res. 94, 10231–10257 (1989).

    Article  ADS  Google Scholar 

  8. Wesnousky, S., Scholz, C. & Shimazaki, K. J. geophys. Res. 87, 6829–6852 (1982).

    Article  ADS  Google Scholar 

  9. Villemin, T. & Sunwoo, C. C. r. hebd., Acad. Séanc. Sci. Paris. Ser. 2 305, 1309–1311 (1987).

    Google Scholar 

  10. Hirata, T. Pure appl. Geophys. 131, 157–170 (1989).

    Article  ADS  Google Scholar 

  11. Gudmundsson, A. Tectonophysics 139, 295–308 (1987).

    Article  ADS  Google Scholar 

  12. Gudmundsson, A. J. struct. Geol. 9, 61–69 (1987).

    Article  ADS  Google Scholar 

  13. Kakimi, T. Bull. geol. Soc. Jap. 31, 467–487 (1980).

    Google Scholar 

  14. Cowie, P. & Scholz, C. Eos 71, 631 (1990).

    Google Scholar 

  15. Scholz, C. Bull. seism. Soc. Am. 72, 1–14 (1982).

    Google Scholar 

  16. Watterson, J. Pure appl. Geophys. 124, 366–373 (1986).

    Article  ADS  Google Scholar 

  17. Kautz, S. & Sclater, J. Tectonics 7, 823–832 (1988).

    Article  ADS  Google Scholar 

  18. Marrett, R. & Allmendinger, R. Geol. Soc. Am., Abstr. Prog 20, A319 (1988).

    Google Scholar 

  19. Marrett, R. & Allmendinger, R. J. struct. Geol. (in the press).

  20. Wesnousky, S. G. thesis, Columbia Univ. (1982).

  21. Working Group for Active Faults in Japan Active Faults in Japan: Sheet maps and inventories (University of Tokyo Press, 1980).

  22. Walsh, J. & Watterson, J. J. struct. Geol. 9, 1039–1046 (1987).

    Article  ADS  Google Scholar 

  23. Muraoka, H. & Kamata, H. J. struct. Geol. 5, 483–495 (1983).

    Article  ADS  Google Scholar 

  24. Elliott, D. Phil. Trans. R. Soc. A283, 289–312 (1976).

    Article  ADS  Google Scholar 

  25. Ranalli, G. Tectonophysics 37, 1–7 (1977).

    Article  ADS  Google Scholar 

  26. Opheim, J. & Gudmundsson, A. Geol. Soc. Am. Bull. 101, 1608–1622 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, C., Cowie, P. Determination of total strain from faulting using slip measurements. Nature 346, 837–839 (1990). https://doi.org/10.1038/346837a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346837a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing