Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Old carbon in living organisms and young CaC03 cements from abyssal brine seeps

Abstract

ABYSSAL brine springs at the base of the Florida Escarpment in the Gulf of Mexico (3,280 m, 26° O2' N 84° 55' W) are surrounded by communities of abundant heterotrophic organisms1–4 and carbonate-cemented crusts5. These organisms are apparently supported by local chemosynthetic primary production because the 13C content of their tissues is lower than that found in typical photosynthetically fixed organic carbon6, and the enzymes associated with chemosynthetic metabolism are present in their tissues7,8. Here we report that fossil methane is the dominant source of carbon found in living tissues and recent authigenic carbonate minerals associated with abyssal brine seeps at the base of the Florida Escarpment. Most organic carbon and authigenic carbonates adjacent to the seeps contain progressively less modern carbon as their 13C contents approach that of methane carried in the brine. Incorporation of fossil methane (=1.3% modern carbon) into living tissues and carbonate cements results in recently formed materials which are depleted in 14C. Therefore, 14C cannot be used to indicate the age of authigenic materials produced at the pore-water-seepage environments that speckle the continental margins of the world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paull, C. K. et al. Science 226, 965–967 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Hecker, B. Bull. biol. Soc. Wash. 6, 465–473 (1985).

    Google Scholar 

  3. Commeau, R. F., Paull, C. K., Commeau, J. A. & Poppe, J. Earth planet. Sci. Lett. 82, 62–73 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Paull, C. K. & Neumann, A. C. Geology 15, 545–548 (1987).

    Article  ADS  Google Scholar 

  5. Neumann, A. C. et al. Bull. Am. Ass. Petrol. Geol. 72, 228 (1988).

    Google Scholar 

  6. Paull, C. K., Jull, A. J. T., Toolin, L. J. & Linick, T. Nature 317, 709–711 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Cavanaugh, C. M., Levering, R. R., Maki, J. S., Mitchell, R. & Lidstrom, M. E. Nature 325, 346–348 (1987).

    Article  ADS  Google Scholar 

  8. Cary, C., Fry, B., Feldbeck, H. & Vetter, R. D. Mar. Biol. 3, 411–418 (1989).

    Article  Google Scholar 

  9. Jannasch, H. W. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A., Bostrom, K., Laubier, L. & Smith, K. L.) 677–709 (Plenum, New York, 1984).

    Google Scholar 

  10. Brooks, J. M. et al. Science 238, 1138–1141 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Chanton, J. P., Martens, C. S. & Paull, C. K. Eos 69, 1118 (1988).

    Google Scholar 

  12. Chanton, J. P., Martens, C. S. & Paull, C. K. Eos 68, 1701 (1987).

    Google Scholar 

  13. Childress, J. J. et al. Science 233, 1306–1308 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Linick, T. W., Jull, A. J. T., Toolin, L. J. & Donahue, D. J. Radiocarbon 28, 522–533 (1986).

    Article  CAS  Google Scholar 

  15. Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Broecker, W. S. & Peng, T.-H. Tracers in the Sea 306–311 (Eldigio, New York, 1982).

    Google Scholar 

  17. Berger, W. H. & Johnson, R. F. Earth planet. Sci. Lett. 41, 223–227 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Ericson, D. B. & Wollin, G. Micropaleontology 2, 257–270 (1956).

    Article  Google Scholar 

  19. Normark, W. R. et al. in Init. Rep. DSDP Leg 96. 425–436 (1983).

    Google Scholar 

  20. Hathaway, J. C. & Degens, E. T. Science 165, 690–692 (1969).

    Article  ADS  CAS  Google Scholar 

  21. Eadie, B. J., Jeffrey, L. M. & Sackett, W. H. Geochem. cosmochlm. Acta 42, 1265–1269 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paull, C., Martens, C., Chanton, J. et al. Old carbon in living organisms and young CaC03 cements from abyssal brine seeps. Nature 342, 166–168 (1989). https://doi.org/10.1038/342166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342166a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing