Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transfer of a β-turn structure to a new protein context

Abstract

FOUR-RESIDUE β-turns and larger loop structures represent a significant fraction of globular protein surfaces and play an important role in determining the conformation and specificity of enzyme active sites and antibody-combining sites1,2. Turns are an attractive starting point to develop protein design methods, as they involve a small number of consecutive residues, adopt a limited number of defined conformations and are minimally constrained by packing interactions with the remainder of the protein. The ability to substitute oneβ-turn geometry for another will extend protein engineering beyond the redecoration of fixed backbone conformations to include local restructuring and the repositioning of surface side chains. To determine the feasibility and to examine the effect of such a structural modification on the fold and thermodynamic stability of a globular protein, we have substituted a five-residue turn sequence from concanavalin A for a type I' β-turn in staphylococcal nuclease. The resulting hybrid protein is folded and has full nuclease enzymatic activity but reduced thermodynamic stability. The crystal structure of the hybrid protein reveals that the guest turn sequence retains the conformation of the parent concanavalin A structure when substituted in the nuclease host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose, G. D., Gierasch, L. M. & Smith, J. A. Adv. Prot. Chem. 37, 1–109 (1985).

    CAS  Google Scholar 

  2. Kuntz, I. D. J. Am. Chem. Soc. 94, 4,009–4,012 (1972).

    Article  CAS  Google Scholar 

  3. Bajaj, M. & Blundell, T. A. A. Rev. Biophys. Bioengng 13, 453–492 (1984).

    Article  CAS  Google Scholar 

  4. Smith, J. A. & Pease, L. G. Crit. Rev. Biochem. 8, 315–399 (1980).

    Article  CAS  Google Scholar 

  5. Wilmot, C. N. & Thornton J. M. J. molec. Biol. 203, 221–232 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Kabsch, W. & Sander, C. Proc. natn. Acad. Sci. U.S.A. 81, 1,075–1,078 (1984).

    Article  CAS  Google Scholar 

  7. Argos, P. J. molec. Biol. 197, 331–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Fine, R. M., Wang, H., Shenkin, P. S., Yarmush, D. L. & Levinthal, C. Proteins 1, 342–362 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Moult, J. & James, M. N. G. Proteins 4, 146–163 (1986).

    Article  Google Scholar 

  10. Chothia, C. et al. Science 233, 755–758 (1986).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Reeke, G. N., Becker, J. W. & Edelman, G. M. J. biol. Chem. 250, 1525–1547 (1975).

    CAS  PubMed  Google Scholar 

  12. Hardman, K. D. & Ainswirth, C. F. Biochemistry 11, 4910–45191 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Sibanda, B. L. & Thornton, J. M. Nature 316, 170–174 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Blundell, T. A., Sibanda, B. L., Sternberg, M. J. E. & Thornton, J. M. Nature 326, 347–352 (1987).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Cuatrecasus, P., Fuchs, S. & Anfinsen, C. B. J. biol. Chem. 242, 1541–1547 (1967).

    Google Scholar 

  16. Pace, C. N. Crit. Rev. Biochem. 3, 1–43 (1975).

    Article  CAS  Google Scholar 

  17. Shortle, D. & Lin, B. Genetics 110, 539–555 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shortle, D. & Meeker, A. K. Proteins 1, 81–89 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Burke, K. L., Dunn, G., Ferguson, M., Minor, P. D. & Almond, J. W. Nature 332, 81–82 (1988).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Murray, M. G. et al. Science 241, 213–215 (1988).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Small, D., Chou, P. Y. & Fasman, G. O. Biochem. biophys. Res. Commun. 79, 341–346 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Loll, P. J. & Lattman, E. E. Proteins (Submitted).

  23. Arnone, A. et al. J. biol. Chem. 245, 2302–2316 (1971).

    Google Scholar 

  24. Cotton, F. A., Hazen, E. E. & Legg, M. J. Proc. natn. Acad. Sci. U.S.A. 76, 2,551–2,554 (1979).

    Article  CAS  Google Scholar 

  25. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Lesk, A. M. & Hardman, K. D. Science 216, 539–540 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Evans, P. A., Kautz, R. A., Fox, R. O. & Dobson, C. M. Biochemistry 28, 362–370 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Arnone, A. et al. Proc. natn. Acad. Sci. U.S.A. 64, 420–427 (1969).

    Article  CAS  ADS  Google Scholar 

  29. Xuong, N., Sullivan, D., Nielsen, C. & Hamlin, R. Acta Crystallogr. B41, 267–269 (1985).

    Article  Google Scholar 

  30. Hendrickson, W. A. Meth. Enzym. 115, 252–271 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, T. A. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Mathews, B. W., & Czerwinski, E. W. Acta. Crystallogr. A31, 480–487 (1975).

    Article  ADS  Google Scholar 

  33. Howard, A. J. et al. J. appl. Cryst. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hynes, T., Kautz, R., Goodman, M. et al. Transfer of a β-turn structure to a new protein context. Nature 339, 73–76 (1989). https://doi.org/10.1038/339073a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339073a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing