Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of angiogenesis during the transition from hyperplasia to neoplasia

Abstract

IT is now well established that unrestricted growth of tumours is dependent upon angiogenesis1,2. Previous studies on tumour growth, however, have not revealed when or how the transition to an angiogenic state occurs during early tumour development. The advent of transgenic mice carrying oncogenes that reproducibly elicit tumours of specific cell types3–6 is providing a new format for studying multi-step tumorigenesis7,8. In one of these models, transgenic mice expressing an oncogene in the β-cells of the pancreatic islets heritably recapitulate a progression from normality to hyperplasia to neoplasia6. We report here that angiogenic activity first appears in a subset of hyperplastic islets before the onset of tumour formation. A novel in vitro assay confirms that hyperplasia per sedoes not obligate angiogenesis. Rather, a few hyperplastic islets become angiogenic in vitro at a time when such islets are neovascularized in vivo and at a frequency that correlates closely with subsequent tumour incidence. These findings suggest that induction of angiogenesis is an important step in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Folkman, J. New Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  2. Folkman, J. & Klaysbrun, M. Science 235, 442–447 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Brinster, R. L. et al. Cell 37, 367–379 (1984).

    Article  CAS  Google Scholar 

  4. Stewart, T. A., Pattengale, P. K. & Leder, D. Cell 38, 627–637 (1984).

    Article  CAS  Google Scholar 

  5. Adams, J. M. et al. Nature 318, 533–538 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Hanahan, D. Nature 315, 115–122 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Hanahan, D. Oncogenes and Growth Control (eds Kahn, P. & Graf, T.) 349–363 (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  8. Hanahan, D. Ann. Rev. Genet. 22, 479–519 (1988).

    Article  CAS  Google Scholar 

  9. Alpert, S., Hanahan, D. & Teitelman, G. Cell 53, 295–308 (1988).

    Article  CAS  Google Scholar 

  10. Teitelman, G., Alpert, S. & Hanahan, D. Cell 52, 97–105 (1988).

    Article  CAS  Google Scholar 

  11. Ingber, D. E., Madri, J. A. & Folkman, J. Endocrinology 119, 1768–1775 (1986).

    Article  CAS  Google Scholar 

  12. Ingber, D. E., Madri, J. A. & Jamieson, J. D. Proc. natn. Acad. Sci. U.S.A. 78, 3901–3905 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Engerman, R. L., Pfaffenbach, D. & Davis, M. D. Lab. Invest. 17, 738–743 (1967).

    CAS  PubMed  Google Scholar 

  14. Gotoh, M., Maki, T., T. Kiyoizumi, Satomi, S. & Monaco, A. Transplantation 40, 437–438 (1985).

    Article  CAS  Google Scholar 

  15. Ausprunk, D. H. & Folkman, J. Microvasc. Res. 14, 53–65 (1977).

    Article  CAS  Google Scholar 

  16. Folkman, J. & Haudenschild, C. Nature 288, 551–556 (1980).

    Article  ADS  CAS  Google Scholar 

  17. The Pathology of Incipient Neoplasia (eds Henson, D. E. & Albores-Saavedra, J.) (Saunders, Philadelphia, 1986).

  18. Foulds, L. Neoplastic Development (Academic, London, 1969).

    Google Scholar 

  19. Knudson, A. G. A. Rev. Genet. 20, 231–251 (1986).

    Article  Google Scholar 

  20. Klein, G. Science 238, 1539–1545 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Srivasta, A., Laidler, P., Davies, R. P., Horgan, K. & Hughes, L. E. Am. J. Path. 133, 419–423 (1988).

    Google Scholar 

  22. Gimbrone, M. A., Jr & Gullino, P. M. Canc. Res. 36, 2611–2620 (1976).

    Google Scholar 

  23. Brem, S. S., Jensen, H. M. & Gullino, P. M. Cancer 41, 239–244 (1978).

    Article  CAS  Google Scholar 

  24. Chodak, G. W., Haudenschild, C., Gittes, R. F. & Folkman, J. Ann. Surg. 192, 762–771 (1980).

    Article  CAS  Google Scholar 

  25. Folkman, J., Haudenschild, C., Zetter, B.R. Proc. natn. Acad. Sci. U.S.A. 76, 5217–5221 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Montesano, R., Orci, L. & Vassalli, P. J. Cell Biol. 97, 1648–1652 (1983).

    Article  CAS  Google Scholar 

  27. Madri, J. A. & Williams, S. K. J. Cell Biol. 97, 153–165 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkman, J., Watson, K., Ingber, D. et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989). https://doi.org/10.1038/339058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing