Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of galactic radio jets by shocks in the ambient medium

Abstract

Observations show that jets in moderate luminosity (<1025 W Hz−1 at 20 cm wavelength) radio galaxies can flare dramatically in a few jet diameters and with opening angles up to 90° into diffuse lobes or tails1–4 (Fig. 1). These morphologies are difficult to reproduce in numerical simulations of supersonic jets that move outward in constant5,6 or smoothly varying atmospheres (N. Norman, unpublished results). By analogy with structures seen in the laboratory7, one could interpret the collimated jets as moderately supersonic (Mach number 2–5) fluid flows, and the lobes or tails as subsonic plumes that are subject to turbulent broadening and entrainment of the ambient medium. Our studies indicate that the transition from supersonic to subsonic flow can occur suddenly only if a strong planar (normal to the flow direction) shock or Mach disk forms within the jet. Here we show that such an internal shock is produced as the jet crosses a shock wave in the external medium. The external shock could form, for example, by a galactic wind encountering the intergalactic medium. We find that for jet disruption the jet Mach number must be less than the wind-shock Mach number, a result also understandable from analytic arguments. We apply this model to Cen A and wide-angle-tailed radio galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burns, J. O., Fiegelson, E. D. & Schreier, E. J. Astrophys. J. 273, 128–153 (1983).

    Article  ADS  Google Scholar 

  2. Perley, R. A., Willis, A. G. & Scott, J. Nature 281, 437–442 (1979).

    Article  ADS  Google Scholar 

  3. Eilek, J. A., Burns, J. O., O'Dea, C. P. & Owen, F. N. Astrophys. J. 278, 37–50 (1984).

    Article  ADS  Google Scholar 

  4. O'Donoghue, A. & Owen, F. N. in Radio Continuum Processes in Clusters of Galaxies (eds O'Dea, C. D. & Uson, J. M.) 155–160 (National Radio Astronomy Observatory, Green Bank, 1986).

    Google Scholar 

  5. Norman, M. L., Smarr, L. L., Winkler, K.-H. A. & Smith, M. D. Astr. Astrophys. 113, 285–302 (1982).

    ADS  Google Scholar 

  6. Norman, M. L., Winkler, K.-H. A. & Smarr, L. L. Physics of Energy Transport in Extragalactic Radio Sources, (eds Bridle, A. H. & Eilek, J. A.) 150–167 (National Radio Astronomy Observatory, Green Bank, 1984)

    Google Scholar 

  7. Shirie, J. W. & Seubold, J. G. Am. Inst. Aeronaut. Astronaut. J. 5(11), 2062–2064 (1967).

    Article  Google Scholar 

  8. Bridle, A. H. & Perley, R. A. A. Rev. Astr. Astrophys. 22, 319–358 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 336 (Pergamon, New York, 1982).

    Google Scholar 

  10. Burns, J. O. Can J. Phys. 64, 373–378 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Feigelson, E. D. et al. Astrophys. J. 251, 31–51 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Loewenstein, N. & Mathews, W. G. Astrophys. J. 319, 614–631 (1987).

    Article  ADS  Google Scholar 

  13. Mathews, W. G. & Baker, J. Astrophys. J. 170, 241–259 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Stocke, J. T. & Burns, J. O. Astrophys. J. 319, 671–682 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Williams, R. E. & Christiansen, W. A. Astrophys. J. 291, 80–87 (1985).

    Article  ADS  Google Scholar 

  16. Gopal-Krishna & Saripalli, L. Astr. Astrophys. 141, 61–66 (1984).

    ADS  Google Scholar 

  17. Malin, D. F., Quinn, P. J. & Graham, J. A. Astrophys. J. 272, L5–L7 (1983).

    Article  ADS  Google Scholar 

  18. Quinn, P. J. Astrophys. J. 279, 596–609 (1984).

    Article  ADS  Google Scholar 

  19. Fanaroff, B. L. & Riley, J. M. Mon. Not. R. astr. Soc. 167, 31–41 (1974).

    Article  ADS  Google Scholar 

  20. Norman, M. L. & Winkler, K.-H. A. (eds) Astrophysical Radiation Hydrodynamics, 187–221 (Reidel, Dordrecht, 1986).

  21. Clarke, D. A. thesis, Univ. New Mexico (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, M., Burns, J. & Sulkanen, M. Disruption of galactic radio jets by shocks in the ambient medium. Nature 335, 146–149 (1988). https://doi.org/10.1038/335146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335146a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing