Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uncoupling of the recombination and topoisomerase activities of the γδ resolvase by a mutation at the crossover point

Abstract

In several well-characterized site-specific recombination systems it has been shown that, for efficient recombination, the two recombining sites must have identical DNA sequences across the region between the staggered points of exchange. The precise DNA sequence of this overlap region, however, appears to be of little importance1–6 (with the exception of one position in the loxP site of bacteriophage PI (ref. 6)). In this report we characterize a mutant recombination site for the site-specific recombination enzyme γδ resolvase (encoded by the γδ transposon), in which the dinucleotide at the crossover point is changed from AT to CT. Our results indicate that identity of thfe two overlap regions is not sufficient for recombination. Although resolvase binds normally to the mutant site and induces the structural deformation characteristic of the wild-type recombination site, catalysis at the crossover point (cutting and rejoining of DNA strands) is effectively limited to just one of the two strands, allowing resolvase to act as a topoisomerase but not as a recombinational enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weisberg, R. A., Enquist, L. W., Foeller, C. & Landy, A. J. molec. Biol. 170, 319–342 (1983).

    Article  CAS  Google Scholar 

  2. Bauer, C. E., Gardner, J. E. & Gumport, R. I. J. molec. Biol. 181, 187–197 (1985).

    Article  CAS  Google Scholar 

  3. de Massy, B., Studier, F. W., Dorgai, L., Appelbaum, E. & Weisberg, R. A. Cold Spring Harb. Symp. quant. Biol. 49, 715–726 (1984).

    Article  CAS  Google Scholar 

  4. Hoess, R. H., Wierzbicki, A. & Abremski, K. Nucleic Acids Res. 14, 2287–2300 (1986).

    Article  CAS  Google Scholar 

  5. Johnson, R. C. & Simon, M. I. Cell 41, 781–791 (1985).

    Article  CAS  Google Scholar 

  6. lida, S. & Hiestand-Nauer, R. Cell 45, 71–79 (1986).

    Article  Google Scholar 

  7. Grindley, N. D. F. & Reed, R. R. A. Rev. Biochem. 54, 863–896 (1985).

    Article  CAS  Google Scholar 

  8. Reed, R. R. Cell, 25, 713–719 (1981).

    Article  CAS  Google Scholar 

  9. Reed, R. R. & Grindley, N. D.F. Cell, 25, 721–728 (1981).

    Article  CAS  Google Scholar 

  10. Hatfull G. F., Noble, S. M. & Grindley, N. D. F. Cell 49, 103–110 (1987).

    Article  CAS  Google Scholar 

  11. Salvo, J. J. & Grindley, N. D. F. Nucleic Acids Res. 15, 9771–9779 (1987).

    Article  CAS  Google Scholar 

  12. Krasnow, M. A. & Cozzarelli, N. R. Cell 32, 1313–1324 (1983).

    Article  CAS  Google Scholar 

  13. Nash, H. A., Bauer, C. E. & Gardner, J. F. Proc. natn. Acad. Sci. U.S.A. 84, 4049–4053 (1987).

    Article  ADS  Google Scholar 

  14. Nunes-Duby, S. E., Matsumoto, L. & Landy, A. Cell 50, 779–788 (1987).

    Article  CAS  Google Scholar 

  15. Boocock, M. R., Brown, J. L. & Sherratt, D. J. in DNA Replication and Recombination (eds Kelley, T. J. & McMacken, R.) 703–718 (Liss, New York, 1987).

    Google Scholar 

  16. Kanaar, R., van de Putte, P. & Cozzarelli, N. R. Proc. natn. Acad. Sci. U.S.A. 85, 752–756 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Krasnow, M. A. et al. Nature 304, 559–560 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Castell S. E., Jordan, S. L. & Halford, S. E. Nucleic Acids Res. 14, 7213–7226 (1986).

    Article  CAS  Google Scholar 

  19. Hatfull, G. F. & Grindley, N. D. F. Proc. natn. Acad. Sci. U.S.A. 83, 5429–5433 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falvey, E., Hatfull, G. & Grindley, N. Uncoupling of the recombination and topoisomerase activities of the γδ resolvase by a mutation at the crossover point. Nature 332, 861–863 (1988). https://doi.org/10.1038/332861a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332861a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing