Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity

Abstract

The octamer sequence ATGCAAAT or its inverse complement ATTTGCAT is well-conserved in all immunoglobulin gene promoters1,2 and has been implicated in promoter function by deletion analysis2–7. Although immunoglobulin promoters are tissue-specific3–6,8, the octamer is also a functional element in non-tissue-specific upstream regions—like those controlling Ul and U2 small nuclear RNA and histone H2B genes—where it is associated with additional canonical elements9–12. Specific interactions occur between the octamer motif and both lymphoid-specific and ubiquitous proteins13–18. By using a synthetic octamer oligonucleotide inserted upstream of the β-globin TATA box we show here that the octamer element by itself is sufficient for directing lymphocyte-specific RNA synthesis when within 70 base pairs of the start site of transcription. We also demonstrate that mutations in any position of the conserved motif interfere with this function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parslow, T. G., Blair, D. L., Murphy, W. J. & Granner, D. K. Proc. natn. Acad. Sci. U.S.A. 81, 2650–2654 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Falkner, F. G. & Zachau, H. G. Nature 310, 71–74 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 81, 7041–7045 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Foster, J., Stafford, J. & Queen, C. Nature 315, 423–425 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Picard, D. & Schaffner, W. EMBO J. 4, 2831–2838 (1985).

    Article  CAS  Google Scholar 

  6. Mason, J. O., Williams, G. T. & Neuberger, M. S. Cell 41, 479–487 (1985).

    Article  CAS  Google Scholar 

  7. Ballard, D. W. & Bothwell, A. Proc. natn. Acad. Sci. U.S.A. 83, 9626–9630 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Grosschedl, R. & Baltimore, D. Cell 41, 885–897 (1985).

    Article  CAS  Google Scholar 

  9. Murphy, J. T., Burgess, R. R., Dahlberg, J. E. & Lund, E. Cell 29, 265–274 (1982).

    Article  CAS  Google Scholar 

  10. Mattaj, I. W., Lienhard, S., Jiricny, J. & De Robertis, E. M. Nature 316, 163–167 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Ciliberto, G., Buckland, R., Cortese, R. & Philipson, L. EMBO J. 4, 1537–1543 (1985).

    Article  CAS  Google Scholar 

  12. Sive, H. L., Heintz, N. & Roeder, R. G. Molec. cell. Biol. 6, 3329–3340 (1986).

    Article  CAS  Google Scholar 

  13. Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. Science 227, 134–140 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Singh, H., Sen, R., Baltimore, D. & Sharp, P. Nature 319, 154–158 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Sive, H. L. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 83, 6382–6386 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Landolfi, N. F., Capra, J. D. & Tucker, P. W. Nature 323, 548–551 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Staudt, L. M. et al. Nature 323, 640–643 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Sen, R. & Baltimore, D. Cell 46, 705–716 (1986).

    Article  CAS  Google Scholar 

  19. Charnay, P., Mellon, P. & Maniatis, T. Molec. cell. Biol. 5, 1498–1511 (1985).

    Article  CAS  Google Scholar 

  20. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  21. Gilman, M., Wilson, R. & Weinberg, R. Molec. cell. Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  22. Takahashi, K. et al. Nature 319, 121–126 (1986).

    Article  ADS  CAS  Google Scholar 

  23. McKnight, S. & Tjian, R. Cell 46, 795–805 (1986).

    Article  CAS  Google Scholar 

  24. Gerster, T., Picard, D. & Schaffner, W. Cell 45, 45–52 (1986).

    Article  CAS  Google Scholar 

  25. Kelley, D. E. & Perry, R. P. Nucleic Acids Res. 14, 5431–5447 (1986).

    Article  CAS  Google Scholar 

  26. Sakano, H., Maki, R., Kurosawa, Y., Roder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Kataoka, T., Nikaido, T., Miyata, T., Moriwaki, K. & Honjo, T. J. biol Chem. 257, 277–285 (1982).

    CAS  PubMed  Google Scholar 

  28. Serfling, E., Jasin, M. & Schaffner, W. Trends Genet. 1, 224–230 (1985).

    Article  CAS  Google Scholar 

  29. Searle, P. F., Stuart, G. W. & Palmiter, R. Molec. cell. Biol 5, 1480–1489 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, T., Staudt, L. & Baltimore, D. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature 329, 174–178 (1987). https://doi.org/10.1038/329174a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329174a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing